A339290
Number of oriented series-parallel networks with n elements and without multiple unit elements in parallel.
Original entry on oeis.org
1, 1, 2, 5, 13, 36, 103, 306, 930, 2887, 9100, 29082, 93951, 306414, 1007361, 3335088, 11108986, 37203873, 125193694, 423099557, 1435427202, 4886975378, 16690971648, 57172387872, 196358421066, 676050576441, 2332887221847, 8067160995797, 27950871439353, 97019613539949
Offset: 1
In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo).
a(3) = 2: (ooo), (o|oo).
a(4) = 5: (oooo), (o(o|oo)), ((o|oo)o), (o|ooo), (oo|oo).
a(5) = 13: (ooooo), (oo(o|oo)), (o(o|oo)o), ((o|oo)oo), (o(o|ooo)), (o(oo|oo)), ((o|ooo)o), ((oo|oo)o), (o|oooo), (o|o(o|oo)), (o|(o|oo)o), (oo|ooo), (o|oo|oo).
A003430 is the case with multiple unit elements in parallel allowed.
A058387 is the case that order is not significant in series configurations.
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); Vec(p)}
A339288
Number of essentially series oriented series-parallel networks with n elements and without multiple unit elements in parallel.
Original entry on oeis.org
0, 1, 1, 3, 8, 22, 64, 189, 577, 1788, 5642, 18016, 58213, 189792, 623913, 2065219, 6878429, 23032917, 77500237, 261892491, 888439320, 3024510467, 10329241959, 35379140285, 121502993735, 418306868672, 1443409882944, 4991122973019, 17292424070839, 60021140494647, 208684858267921
Offset: 1
In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(2) = 1: (oo).
a(3) = 1: (ooo).
a(4) = 3: (oooo), (o(o|oo)), ((o|oo)o).
a(5) = 8: (ooooo), (oo(o|oo)), (o(o|oo)o), ((o|oo)oo), (o(o|ooo)), (o(oo|oo)), ((o|ooo)o), ((oo|oo)o).
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); Vec(p - p/(1+p), -n)}
A339292
Number of essentially parallel achiral series-parallel networks with n elements and without multiple unit elements in parallel.
Original entry on oeis.org
1, 0, 1, 2, 3, 6, 11, 21, 41, 79, 154, 304, 598, 1188, 2360, 4719, 9431, 18966, 38107, 76968, 155368, 314987, 638325, 1298379, 2640223, 5385737, 10984999, 22465570, 45945256, 94180208, 193076780, 396603802, 814838739, 1676975258, 3452212803, 7117242628
Offset: 1
In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(3) = 1: (o|oo).
a(4) = 2: (o|ooo), (oo|oo).
a(5) = 3: (o|oooo), (oo|ooo), (o|oo|oo).
a(6) = 6: (o|ooooo), (o|o(o|oo)o), (oo|oooo), (ooo|ooo), (o|oo|ooo), (oo|oo|oo).
-
\\ here B(n) gives A339290 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
B(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); p}
seq(n, Z=x)={my(q=subst(B((n+1)\2, Z), x, x^2), s=q^2/(1+q), p=Z+O(x^2), t=0); forstep(n=2, n, 2, t=q*(1 + p); p=Z + (1 + Z)*x*Ser(EulerT(Vec(t+(s-subst(t, x, x^2))/2, -n-1))) - t); Vec(p+O(x*x^n))}
A339295
Number of essentially parallel unoriented series-parallel networks with n elements and without multiple unit elements in parallel.
Original entry on oeis.org
1, 0, 1, 2, 4, 10, 25, 69, 197, 589, 1806, 5685, 18168, 58905, 192904, 637294, 2119994, 7094961, 23865782, 80642017, 273571625, 931389949, 3181184007, 10897272983, 37429033777, 128874546753, 444744161951, 1538030244174, 5329246656885, 18499283612755
Offset: 1
In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(3) = 1: (o|oo).
a(4) = 2: (o|ooo), (oo|oo).
a(5) = 4: (o|oooo), (o|o(o|oo)), (oo|ooo), (o|oo|oo).
-
\\ here B(n) gives A339290 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
B(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); p}
seq(n, Z=x)={my(q=subst(B((n+1)\2, Z), x, x^2), s=q^2/(1+q), p=Z+O(x^2), t=0); forstep(n=2, n, 2, t=q*(1 + p); p=Z + (1 + Z)*x*Ser(EulerT(Vec(t+(s-subst(t, x, x^2))/2, -n-1))) - t); Vec(p+1-1/(1+B(n,Z)))/2}
A339300
Number of essentially parallel oriented series-parallel networks with n labeled elements and without multiple unit elements in parallel.
Original entry on oeis.org
1, 0, 6, 36, 540, 8400, 169680, 3966480, 107518320, 3295283040, 112888369440, 4272403544640, 177061349424960, 7974538914101760, 387840385867334400, 20257533315635616000, 1130954856127948051200, 67208532822729871372800, 4235759061057115720128000
Offset: 1
A048174 is the case with multiple edges in parallel allowed.
A058379 is the case that order is not significant in series configurations.
-
seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = (1 + Z)*exp(p^2/(1+p)) - 1); Vec(serlaplace(1-1/(1+p)))}
Showing 1-5 of 5 results.
Comments