A339290
Number of oriented series-parallel networks with n elements and without multiple unit elements in parallel.
Original entry on oeis.org
1, 1, 2, 5, 13, 36, 103, 306, 930, 2887, 9100, 29082, 93951, 306414, 1007361, 3335088, 11108986, 37203873, 125193694, 423099557, 1435427202, 4886975378, 16690971648, 57172387872, 196358421066, 676050576441, 2332887221847, 8067160995797, 27950871439353, 97019613539949
Offset: 1
In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo).
a(3) = 2: (ooo), (o|oo).
a(4) = 5: (oooo), (o(o|oo)), ((o|oo)o), (o|ooo), (oo|oo).
a(5) = 13: (ooooo), (oo(o|oo)), (o(o|oo)o), ((o|oo)oo), (o(o|ooo)), (o(oo|oo)), ((o|ooo)o), ((oo|oo)o), (o|oooo), (o|o(o|oo)), (o|(o|oo)o), (oo|ooo), (o|oo|oo).
A003430 is the case with multiple unit elements in parallel allowed.
A058387 is the case that order is not significant in series configurations.
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); Vec(p)}
A339289
Number of essentially parallel oriented series-parallel networks with n elements and without multiple unit elements in parallel.
Original entry on oeis.org
1, 0, 1, 2, 5, 14, 39, 117, 353, 1099, 3458, 11066, 35738, 116622, 383448, 1269869, 4230557, 14170956, 47693457, 161207066, 546987882, 1862464911, 6361729689, 21793247587, 74855427331, 257743707769, 889477338903, 3076038022778, 10658447368514, 36998473045302
Offset: 1
In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(3) = 1: (o|oo).
a(4) = 2: (o|ooo), (oo|oo).
a(5) = 5: (o|oooo), (o|o(o|oo)), (o|(o|oo)o), (oo|ooo), (o|oo|oo).
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); Vec(1-1/(1+p))}
A339291
Number of essentially series achiral series-parallel networks with n elements and without multiple unit elements in parallel.
Original entry on oeis.org
0, 1, 1, 1, 2, 4, 6, 13, 21, 44, 76, 158, 281, 584, 1067, 2211, 4131, 8535, 16231, 33481, 64594, 133067, 259821, 534869, 1054751, 2170736, 4316320, 8884035, 17788985, 36627593, 73776883, 151996070, 307705669, 634411061, 1289890551, 2661708319
Offset: 1
In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(2) = 1: (oo).
a(3) = 1: (ooo).
a(4) = 1: (oooo).
a(5) = 2: (ooooo), (o(o|oo)o).
a(6) = 4: (oooooo), ((o|oo)(o|oo)), (o(o|ooo)o), (o(oo|oo)o).
-
\\ here B(n) gives A339290 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
B(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); p}
seq(n, Z=x)={my(q=subst(B((n+1)\2, Z), x, x^2), s=q^2/(1+q), p=O(x^2)); forstep(n=2, n, 2, p=q*(1 + Z + (1 + Z)*x*Ser(EulerT(Vec(p+(s-subst(p, x, x^2))/2, 1-n))) - p)); Vec(p+O(x*x^n), -n)}
A339294
Number of essentially series unoriented series-parallel networks with n elements and without multiple unit elements in parallel.
Original entry on oeis.org
0, 1, 1, 2, 5, 13, 35, 101, 299, 916, 2859, 9087, 29247, 95188, 312490, 1033715, 3441280, 11520726, 38758234, 130962986, 444251957, 1512321767, 5164750890, 17689837577, 60752024243, 209154519704, 721707099632, 2495565928527, 8646220929912, 30010588561120
Offset: 1
In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(2) = 1: (oo).
a(3) = 1: (ooo).
a(4) = 2: (oooo), (o(o|oo)).
a(5) = 5: (ooooo), (oo(o|oo)), (o(o|oo)o), (o(o|ooo)), (o(oo|oo)).
-
\\ here B(n) gives A339290 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
B(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); p}
seq(n, Z=x)={my(q=subst(B((n+1)\2, Z), x, x^2), s=q^2/(1+q), p=O(x^2)); forstep(n=2, n, 2, p=q*(1 + Z + (1 + Z)*x*Ser(EulerT(Vec(p+(s-subst(p, x, x^2))/2, 1-n))) - p)); my(t=B(n, Z)); Vec(p + t - t/(1+t), -n)/2}
A339299
Number of essentially series oriented series-parallel networks with n labeled elements and without multiple unit elements in parallel.
Original entry on oeis.org
0, 2, 6, 72, 840, 14040, 276360, 6494880, 175452480, 5375311200, 183962227680, 6958070380800, 288200792880000, 12974113884251520, 630742839699772800, 32933429270386444800, 1838083950894102912000, 109201772719684867622400, 6880730833827011402841600
Offset: 1
A058349 is the case with multiple unit elements in parallel allowed.
A058380 is the case that order is not significant in series configurations.
-
seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = (1 + Z)*exp(p^2/(1+p)) - 1); Vec(serlaplace(p-p/(1+p)), -n)}
Showing 1-5 of 5 results.
Comments