cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A339289 Number of essentially parallel oriented series-parallel networks with n elements and without multiple unit elements in parallel.

Original entry on oeis.org

1, 0, 1, 2, 5, 14, 39, 117, 353, 1099, 3458, 11066, 35738, 116622, 383448, 1269869, 4230557, 14170956, 47693457, 161207066, 546987882, 1862464911, 6361729689, 21793247587, 74855427331, 257743707769, 889477338903, 3076038022778, 10658447368514, 36998473045302
Offset: 1

Views

Author

Andrew Howroyd, Dec 07 2020

Keywords

Comments

See A339290 for additional details.

Examples

			In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(3) = 1: (o|oo).
a(4) = 2: (o|ooo), (oo|oo).
a(5) = 5: (o|oooo), (o|o(o|oo)), (o|(o|oo)o), (oo|ooo), (o|oo|oo).
		

Crossrefs

Cf. A339155, A339288, A339290, A339292 (achiral), A339295 (unoriented).

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); Vec(1-1/(1+p))}

Formula

G.f.: B(x)/(1 + B(x)) where B(x) is the g.f. of A339290.

A339291 Number of essentially series achiral series-parallel networks with n elements and without multiple unit elements in parallel.

Original entry on oeis.org

0, 1, 1, 1, 2, 4, 6, 13, 21, 44, 76, 158, 281, 584, 1067, 2211, 4131, 8535, 16231, 33481, 64594, 133067, 259821, 534869, 1054751, 2170736, 4316320, 8884035, 17788985, 36627593, 73776883, 151996070, 307705669, 634411061, 1289890551, 2661708319
Offset: 1

Views

Author

Andrew Howroyd, Dec 07 2020

Keywords

Comments

See A339293 for additional details.

Examples

			In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(2) = 1: (oo).
a(3) = 1: (ooo).
a(4) = 1: (oooo).
a(5) = 2: (ooooo), (o(o|oo)o).
a(6) = 4: (oooooo), ((o|oo)(o|oo)), (o(o|ooo)o), (o(oo|oo)o).
		

Crossrefs

Cf. A339157, A339288 (oriented), A339290, A339292, A339293, A339294 (unoriented).

Programs

  • PARI
    \\ here B(n) gives A339290 as a power series.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    B(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); p}
    seq(n, Z=x)={my(q=subst(B((n+1)\2, Z), x, x^2), s=q^2/(1+q), p=O(x^2)); forstep(n=2, n, 2, p=q*(1 + Z + (1 + Z)*x*Ser(EulerT(Vec(p+(s-subst(p, x, x^2))/2, 1-n))) - p)); Vec(p+O(x*x^n), -n)}

Formula

G.f.: (1 + P(x))*B(x^2) where P(x) is the g.f. of A339292 and B(x) is the g.f. of A339290.

A339293 Number of achiral series-parallel networks with n elements and without multiple unit elements in parallel.

Original entry on oeis.org

1, 1, 2, 3, 5, 10, 17, 34, 62, 123, 230, 462, 879, 1772, 3427, 6930, 13562, 27501, 54338, 110449, 219962, 448054, 898146, 1833248, 3694974, 7556473, 15301319, 31349605, 63734241, 130807801, 266853663, 548599872, 1122544408, 2311386319, 4742103354, 9778950947
Offset: 1

Views

Author

Andrew Howroyd, Dec 07 2020

Keywords

Comments

A series configuration is the unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is the unit element or a multiset of two or more series configurations. In this variation, parallel configurations may include the unit element only once. a(n) is the number of series or parallel configurations with n unit elements that are invariant under the reversal of all contained series configurations.

Examples

			In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo).
a(3) = 2: (ooo), (o|oo).
a(4) = 3: (oooo), (o|ooo), (oo|oo).
a(5) = 5: (ooooo), (o(o|oo)o), (o|oooo), (oo|ooo), (o|oo|oo).
a(6) = 10: (oooooo), ((o|oo)(o|oo)), (o(o|ooo)o), (o(oo|oo)o), (o|ooooo), (o|o(o|oo)o), (oo|oooo), (ooo|ooo), (o|oo|ooo), (oo|oo|oo).
		

Crossrefs

Cf. A339159, A339290 (oriented), A339291, A339292, A339296 (unoriented).

Programs

  • PARI
    \\ here B(n) gives A339290 as a power series.
    \\ Note replacing Z by x/(1-x) gives A339159.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    B(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); p}
    seq(n, Z=x)={my(q=subst(B((n+1)\2, Z), x, x^2), s=q^2/(1+q), p=Z+O(x^2), t=0); forstep(n=2, n, 2, t=q*(1 + p); p=Z + (1 + Z)*x*Ser(EulerT(Vec(t+(s-subst(t, x, x^2))/2, -n-1))) - t); Vec(p+t+O(x*x^n))}

Formula

a(n) = A339291(n) + A339292(n) for n > 1.

A339295 Number of essentially parallel unoriented series-parallel networks with n elements and without multiple unit elements in parallel.

Original entry on oeis.org

1, 0, 1, 2, 4, 10, 25, 69, 197, 589, 1806, 5685, 18168, 58905, 192904, 637294, 2119994, 7094961, 23865782, 80642017, 273571625, 931389949, 3181184007, 10897272983, 37429033777, 128874546753, 444744161951, 1538030244174, 5329246656885, 18499283612755
Offset: 1

Views

Author

Andrew Howroyd, Dec 07 2020

Keywords

Comments

See A339296 for additional details.

Examples

			In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(3) = 1: (o|oo).
a(4) = 2: (o|ooo), (oo|oo).
a(5) = 4: (o|oooo), (o|o(o|oo)), (oo|ooo), (o|oo|oo).
		

Crossrefs

Cf. A339224, A339289 (oriented), A339292 (achiral), A339294, A339296.

Programs

  • PARI
    \\ here B(n) gives A339290 as a power series.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    B(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); p}
    seq(n, Z=x)={my(q=subst(B((n+1)\2, Z), x, x^2), s=q^2/(1+q), p=Z+O(x^2), t=0); forstep(n=2, n, 2, t=q*(1 + p); p=Z + (1 + Z)*x*Ser(EulerT(Vec(t+(s-subst(t, x, x^2))/2, -n-1))) - t); Vec(p+1-1/(1+B(n,Z)))/2}

Formula

a(n) = (A339289(n) + A339292(n)) / 2.
Showing 1-4 of 4 results.