A339290
Number of oriented series-parallel networks with n elements and without multiple unit elements in parallel.
Original entry on oeis.org
1, 1, 2, 5, 13, 36, 103, 306, 930, 2887, 9100, 29082, 93951, 306414, 1007361, 3335088, 11108986, 37203873, 125193694, 423099557, 1435427202, 4886975378, 16690971648, 57172387872, 196358421066, 676050576441, 2332887221847, 8067160995797, 27950871439353, 97019613539949
Offset: 1
In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo).
a(3) = 2: (ooo), (o|oo).
a(4) = 5: (oooo), (o(o|oo)), ((o|oo)o), (o|ooo), (oo|oo).
a(5) = 13: (ooooo), (oo(o|oo)), (o(o|oo)o), ((o|oo)oo), (o(o|ooo)), (o(oo|oo)), ((o|ooo)o), ((oo|oo)o), (o|oooo), (o|o(o|oo)), (o|(o|oo)o), (oo|ooo), (o|oo|oo).
A003430 is the case with multiple unit elements in parallel allowed.
A058387 is the case that order is not significant in series configurations.
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); Vec(p)}
A339297
Triangle read by rows: T(n,k) is the number of oriented series-parallel networks with n colored elements and without multiple unit elements in parallel using exactly k colors.
Original entry on oeis.org
1, 1, 2, 2, 12, 12, 5, 64, 162, 108, 13, 354, 1734, 2760, 1380, 36, 1992, 16977, 48716, 56100, 22440, 103, 11538, 161691, 746316, 1488240, 1338120, 446040, 306, 68427, 1524969, 10652086, 32760180, 49718640, 36614760, 10461360, 930, 414294, 14382720, 146464740, 652517010, 1487453760, 1816345440, 1131883200, 282970800
Offset: 1
Triangle begins:
1;
1, 2;
2, 12, 12;
5, 64, 162, 108;
13, 354, 1734, 2760, 1380;
36, 1992, 16977, 48716, 56100, 22440;
103, 11538, 161691, 746316, 1488240, 1338120, 446040;
...
-
\\ R(n, k) gives colorings using at most k colors as a vector.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(Z=k*x, p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); Vec(p)}
M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))}
{my(T=M(8)); for(n=1, #T~, print(T[n, 1..n]))}
A339299
Number of essentially series oriented series-parallel networks with n labeled elements and without multiple unit elements in parallel.
Original entry on oeis.org
0, 2, 6, 72, 840, 14040, 276360, 6494880, 175452480, 5375311200, 183962227680, 6958070380800, 288200792880000, 12974113884251520, 630742839699772800, 32933429270386444800, 1838083950894102912000, 109201772719684867622400, 6880730833827011402841600
Offset: 1
A058349 is the case with multiple unit elements in parallel allowed.
A058380 is the case that order is not significant in series configurations.
-
seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = (1 + Z)*exp(p^2/(1+p)) - 1); Vec(serlaplace(p-p/(1+p)), -n)}
A339300
Number of essentially parallel oriented series-parallel networks with n labeled elements and without multiple unit elements in parallel.
Original entry on oeis.org
1, 0, 6, 36, 540, 8400, 169680, 3966480, 107518320, 3295283040, 112888369440, 4272403544640, 177061349424960, 7974538914101760, 387840385867334400, 20257533315635616000, 1130954856127948051200, 67208532822729871372800, 4235759061057115720128000
Offset: 1
A048174 is the case with multiple edges in parallel allowed.
A058379 is the case that order is not significant in series configurations.
-
seq(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = (1 + Z)*exp(p^2/(1+p)) - 1); Vec(serlaplace(1-1/(1+p)))}
Showing 1-4 of 4 results.
Comments