cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A277959 Numbers k such that 2 is the largest decimal digit of k^2.

Original entry on oeis.org

11, 101, 110, 149, 1001, 1010, 1011, 1100, 1101, 1490, 10001, 10010, 10011, 10100, 10110, 11000, 11001, 11010, 14499, 14900, 100001, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101100, 110000, 110001, 110010, 110100, 144990, 149000, 316261
Offset: 1

Views

Author

Colin Barker, Nov 06 2016

Keywords

Comments

The terms > 1 of A058411 can be considered as primitive elements of this sequence, obtained by multiplying those by powers of 10 (cf. formula). These terms of A058411 have at least 2 nonzero digits, and therefore their square has at least one digit 2. - M. F. Hasler, Nov 15 2017

Crossrefs

Cf. A277946 (the squares); A277960, A277961, A295005, ..., A295009 (analog for largest digit 3, 4, 5, ..., 9).
Cf. A058411, A058412 and A058413, ..., A058474. (Similar but no trailing 0's allowed.)
Cf. A136808 and A136809, ..., A137147 for other digit combinations. (Numbers must satisfy the same restriction as their squares.)

Programs

  • Mathematica
    Select[Range[4*10^5], And[#[[2]] > 0, Union@ Take[RotateLeft[#, 2], 7] == {0}] &@ DigitCount[#^2] &] (* Michael De Vlieger, Nov 16 2017 *)
  • PARI
    L=List(); for(n=1, 10000, if(vecmax(digits(n^2))==2, listput(L, n))); Vec(L)
    
  • PARI
    A277959(LIM=1e15, L=List(), N=1)={while(LIM>N=next_A058411(N),my(t=N); until(LIMM. F. Hasler, Nov 15 2017

Formula

Equals (A058411 \ {1})*A011557, where A011557 = { 10^k; k >= 0 }. - M. F. Hasler, Nov 16 2017

Extensions

Edited by M. F. Hasler, Nov 16 2017

A058414 Squares composed of digits {0,1,4}, not ending with zero.

Original entry on oeis.org

1, 4, 144, 441, 1444, 10404, 40401, 1004004, 1100401, 4004001, 100040004, 114041041, 400040001, 414041104, 10000400004, 10110101401, 40000400001, 41011110144, 141001001001, 414441100441, 1000004000004, 1041110041104, 4000004000001, 4011400111104, 100000040000004
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Crossrefs

Cf. A058413.

Formula

a(n) = A058413(n)^2. - Elmo R. Oliveira, Jul 18 2025

Extensions

More terms added using A058413 by Elmo R. Oliveira, Jul 18 2025

A378048 Numbers k such that k and k^2 together use at most 4 distinct decimal digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 35, 38, 40, 41, 45, 46, 50, 55, 56, 60, 63, 64, 65, 66, 68, 70, 74, 75, 76, 77, 80, 81, 83, 85, 88, 90, 91, 95, 96, 97, 99, 100, 101, 102, 105, 109, 110
Offset: 1

Views

Author

Jovan Radenkovicc, Nov 15 2024

Keywords

Comments

Problem: Is there a real constant c such that a(n) < n^c for all positive integers n?
All of A136808, A136809, A136816, ..., A137079 are subsequences. Many if not most terms of A058411, A058413, ... ("tridigital solutions") are also in this sequence; see also Hisanori Mishima's web page for some nontrivial solutions. - M. F. Hasler, Feb 02 2025

Examples

			816 is in the sequence since 816^2 = 665856 and both together use at most 4 distinct digits.
149 is not in the sequence since 149^2 = 22201 and both together use 5 distinct digits.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1000000] | #Set(Intseq(n)) le 4 and #Set(Intseq(n) cat Intseq(n^2)) le 4];
    
  • Mathematica
    Select[Range[0, 110], Length[Union @@ IntegerDigits@ {#, #^2}] < 5 &] (* Amiram Eldar, Nov 15 2024 *)
  • PARI
    isok(k) = #Set(concat(digits(k), digits(k^2))) <= 4; \\ Michel Marcus, Nov 15 2024
    
  • PARI
    is(n)=my(s=Set(digits(n))); #s<5 && #setunion(Set(digits(n^2)),s)<5 \\ Charles R Greathouse IV, Jan 30 2025
    
  • PARI
    is1(n)=#setunion(Set(digits(n^2)),Set(digits(n)))<5
    ok(m)=my(d=concat(apply(k->digits(lift(k)), [m,m^2]))
    test(d)=my(v=List(),D=10^d); for(n=0,D-1, if(ok(Mod(n,D)), listput(v,n))); Vec(v)
    res=test(8); \\ build a list of residues mod 10^8
    D=diff(concat(res,res[1]+10^8)); #D
    u=List(); for(n=0,10^7, if(is1(n) && !setsearch(n,res), listput(u,n))); \\ build exceptions
    setminus(select(is1,[0..n]),list(n))
    list(lim)=my(v=List(u)); forstep(n=0,lim,D, if(is1(n), listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Jan 30 2025
    
  • Python
    def ok(n): return len(set(str(n)+str(n**2))) <= 4
    print([k for k in range(111) if ok(k)]) # Michael S. Branicky, Nov 18 2024

Formula

A043537(A053061(a(n))) <= 4.
Trivially, a(n) >> n^1.66... where the exponent is log(10)/log(4) (A154155). - Charles R Greathouse IV, Jan 30 2025
Showing 1-3 of 3 results.