cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058484 McKay-Thompson series of class 12F for Monster.

Original entry on oeis.org

1, 6, 21, 56, 126, 258, 498, 924, 1659, 2884, 4872, 8028, 12965, 20586, 32187, 49616, 75468, 113412, 168590, 248148, 361929, 523348, 750660, 1068576, 1510428, 2120934, 2959692, 4105808, 5663814, 7771452, 10609576, 14414676, 19494855, 26249984, 35197536
Offset: 0

Views

Author

N. J. A. Sloane, Nov 27 2000

Keywords

Examples

			T12F = 1/q + 6*q + 21*q^3 + 56*q^5 + 126*q^7 + 258*q^9 + 498*q^11 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^(3*k-1))*(1+x^(3*k-2)))^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *)
    eta[q_] := q^(1/24)*QPochhammer[q]; A := q^(1/2)*(eta[q^2]*eta[q^3]/(eta[q]*eta[q^6]))^6; a := CoefficientList[Series[A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 01 2018 *)
  • PARI
    q='q+O('q^66); Vec( eta(q^2)^6*eta(q^3)^6 / (eta(q)^6*eta(q^6)^6) )  \\ Joerg Arndt, Mar 13 2017

Formula

a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015
From G. A. Edgar, Mar 13 2017: (Start)
Expansion of q^(1/2)*(eta(q^2)*eta(q^3) / (eta(q)*eta(q^6)))^6 in powers of q.
T12F(q) = T6B(q^2)^(1/2) with T6B the g.f. of A121665, the convolution square of A058484. (End)

Extensions

More terms from Vaclav Kotesovec, Sep 10 2015