A058484 McKay-Thompson series of class 12F for Monster.
1, 6, 21, 56, 126, 258, 498, 924, 1659, 2884, 4872, 8028, 12965, 20586, 32187, 49616, 75468, 113412, 168590, 248148, 361929, 523348, 750660, 1068576, 1510428, 2120934, 2959692, 4105808, 5663814, 7771452, 10609576, 14414676, 19494855, 26249984, 35197536
Offset: 0
Keywords
Examples
T12F = 1/q + 6*q + 21*q^3 + 56*q^5 + 126*q^7 + 258*q^9 + 498*q^11 + ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..148 from G. A. Edgar)
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- Index entries for McKay-Thompson series for Monster simple group
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[((1+x^(3*k-1))*(1+x^(3*k-2)))^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *) eta[q_] := q^(1/24)*QPochhammer[q]; A := q^(1/2)*(eta[q^2]*eta[q^3]/(eta[q]*eta[q^6]))^6; a := CoefficientList[Series[A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 01 2018 *)
-
PARI
q='q+O('q^66); Vec( eta(q^2)^6*eta(q^3)^6 / (eta(q)^6*eta(q^6)^6) ) \\ Joerg Arndt, Mar 13 2017
Formula
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015
From G. A. Edgar, Mar 13 2017: (Start)
Expansion of q^(1/2)*(eta(q^2)*eta(q^3) / (eta(q)*eta(q^6)))^6 in powers of q.
Extensions
More terms from Vaclav Kotesovec, Sep 10 2015