cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A058490 Coefficients of replicable function number 12b.

Original entry on oeis.org

1, 5, 27, 41, 146, 243, 510, 887, 1755, 2728, 5052, 7857, 13157, 20253, 32805, 48680, 76568, 112320, 169814, 246263, 365013, 519046, 755632, 1063368, 1516404, 2112551, 2972160, 4089098, 5683166, 7750782, 10633276, 14382932, 19539387, 26192432, 35263852
Offset: 0

Views

Author

N. J. A. Sloane, Nov 27 2000

Keywords

Comments

The convolution square of this sequence is A007254 except for the constant term: T12b(q)^2 = T6A(q^2) + 10. - G. A. Edgar, Apr 15 2017
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			T12b = 1/q + 5*q + 27*q^3 + 41*q^5 + 146*q^7 + 243*q^9 + 510*q^11 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := With[{A = (QPochhammer[ x^2] QPochhammer[ x^3] / (QPochhammer[ x] QPochhammer[ x^6]))^6}, SeriesCoefficient[ A - x / A, {x, 0, n}]]; (* Michael Somos, Jun 12 2017 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); A = (eta(x^2 + A) * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)))^6; polcoeff( A - x/A, n))}; /* Michael Somos, Jun 12 2017 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); A = (eta(x + A) * eta(x^3 + A) / (eta(x^2 + A) * eta(x^6 + A)))^3; polcoeff( A + 8*x/A, n))}; /* Michael Somos, Jun 12 2017 */

Formula

Expansion of q^(1/2) * (eta(q)^3*eta(q^3)^3 / (eta(q^2)^3*eta(q^6)^3) + 8 *eta(q^2)^3*eta(q^6)^3 / (eta(q)^3*eta(q^3)^3)) in powers of q. - G. A. Edgar, Apr 15 2017
From Michael Somos, Jun 12 2017: (Start)
Expansion of (chi(-x) * chi(-x^3))^3 + 8*x/(chi(-x) * chi(-x^3))^3 = (chi(-x^3) / chi(-x))^6 - x*(chi(-x) / chi(-x^3))^6 in powers of x.
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = f(t) where q = exp(2 Pi i t).
Convolution square is A288630.
a(n) = 2*A058484(n) - A058206(n) = 2*A058492(n) - A058489(n). (End)
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 13 2017

Extensions

More terms from Michael Somos, Feb 06 2009

A229180 Expansion of (chi(-x) * chi(-x^3))^-3 in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 3, 6, 16, 33, 60, 118, 210, 354, 612, 1008, 1608, 2583, 4035, 6174, 9448, 14196, 21024, 31054, 45282, 65322, 93884, 133638, 188640, 265225, 370086, 512934, 708136, 971628, 1325724, 1802134, 2437200, 3280452, 4400132, 5876184, 7815288, 10360890, 13683525
Offset: 0

Views

Author

Michael Somos, Sep 30 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In Verrill (1999) section 2.6, denoted by g as a function of q.

Examples

			G.f. = 1 + 3*x + 6*x^2 + 16*x^3 + 33*x^4 + 60*x^5 + 118*x^6 + 210*x^7 + ...
G.f. = q + 3*q^3 + 6*q^5 + 16*q^7 + 33*q^9 + 60*q^11 + 118*q^13 + 210*q^15 + ...
		

References

  • H. Verrill, Some Congruences related to modular forms, Max Planck Institute, 1999.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x, x^2] QPochhammer[x^3, x^6])^3, {x, 0, n}];
    nmax = 40; CoefficientList[Series[Product[1/((1 - x^(2*k - 1)) * (1 - x^(6*k - 3)))^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A) / (eta(x + A) * eta(x^3 + A)))^3, n))};

Formula

Expansion of q^(-1/2) * (eta(q^2) * eta(q^6) / (eta(q) * eta(q^3)))^3 in powers of q.
Euler transform of period 6 sequence [3, 0, 6, 0, 3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = (1/8) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A058492.
G.f.: t / (1 - 10*t^2 + 9*t^4)^(1/2) where t = the g.f. of A217786.
G.f.: 1 / (Product_{k>0} (1 - x^(2*k - 1)) * (1 - x^(6*k - 3)))^3.
Convolution inverse of A058492.
a(n) ~ exp(2*Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
Showing 1-2 of 2 results.