cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A328798 Expansion of 1 / (chi(-x) * chi(-x^3)) in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 1, 3, 3, 4, 7, 8, 10, 16, 19, 23, 33, 39, 48, 65, 77, 93, 122, 144, 173, 220, 259, 309, 384, 451, 534, 653, 764, 899, 1085, 1264, 1479, 1765, 2048, 2385, 2820, 3260, 3778, 4432, 5105, 5891, 6864, 7879, 9056, 10491, 12002, 13744, 15839, 18064, 20616, 23648
Offset: 0

Views

Author

Michael Somos, Oct 28 2019

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution inverse is A112175, 2nd power is A102315, 3rd power is A229180, 6th power is A123653.
f(-1 / (216 t)) = 1/2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A112175.

Examples

			G.f. = 1 + x + x^2 + 3*x^3 + 3*x^4 + 4*x^5 + 7*x^6 + 8*x^7 + ...
G.f. = q + q^7 + q^13 + 3*q^19 + 3*q^25 + 4*q^31 + 7*q^37 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] QPochhammer[ -x^3, x^3], {x, 0, n}];
  • PARI
    {a(n) = my(A); if ( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^6 + A) / (eta(x + A) * eta(x^3 + A)), n))};

Formula

Expansion of q^(-1/6) * eta(q^2) * eta(q^6) / (eta(q) * eta(q^3)) in powers of q.
Euler transform of period 6 sequence [1, 0, 2, 0, 1, 0, ...].
G.f.: Product_{k>=1} (1 + x^k)^(-1) * (1 + x^(3*k))^(-1).
a(n) ~ exp(2*Pi*sqrt(n)/3) / (4*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Oct 31 2019

A229179 Number of solutions of x^2 + y^2 + z^2 == -1 (mod n) with x, y, and z in 0..n-1.

Original entry on oeis.org

1, 4, 12, 8, 30, 48, 56, 0, 108, 120, 132, 96, 182, 224, 360, 0, 306, 432, 380, 240, 672, 528, 552, 0, 750, 728, 972, 448, 870, 1440, 992, 0, 1584, 1224, 1680, 864, 1406, 1520, 2184, 0, 1722, 2688, 1892, 1056, 3240, 2208, 2256, 0, 2744, 3000, 3672, 1456
Offset: 1

Views

Author

Keywords

Examples

			As 60 = 4 * 3 * 5, a(60) = a(4) * a(3) * a(5) = 8 * (3 * (3 + 1)) * (5 * (5 + 1)) = 8 * 12 * 30 = 2880. - _David A. Corneth_, Jun 24 2018
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[ If[Mod[a^2 + b^2 + c^2 + 1, n] == 0, 1, 0], {c, 0, n - 1}, {b, 0,  n - 1}, {a, 0, n - 1}], {n, 14}]
    f[p_, e_] := If[p == 2, Which[e == 1, 4, e == 2, 8, e > 2, 0], (p + 1)*p^(2*e - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Oct 18 2022 *)
  • PARI
    a(n)={my(p=Mod(sum(i=0, n-1, x^(i^2 % n)), x^n-1)); polcoeff(lift(p^3), n-1)} \\ Andrew Howroyd, Jun 24 2018
    
  • PARI
    first(n) = {my(res = vector(n)); forstep(i = 1, n, 2, f = factor(i); res[i] = 1; for(j = 1, #f~, res[i] *= f[j, 1] * (f[j, 1] + 1) * f[j, 1] ^ ((f[j, 2] - 1) << 1)); res); for(k = 1, 2, forstep(i = 1, n >> k, 2, res[i << k] = res[i] << (k+1))); res} \\ David A. Corneth, Jun 24 2018

Formula

a(8 * n) = 0; for odd prime p, a(p^k) = p^(2 * k - 1) * (p + 1); a(2) = 4, a(4) = 8. - David A. Corneth, Jun 24 2018
Sum_{k=1..n} a(k) ~ c * n^3, where c = 13/(4*Pi^2) = 0.329293... . - Amiram Eldar, Oct 18 2022
Showing 1-2 of 2 results.