A058498 Number of solutions to c(1)t(1) + ... + c(n)t(n) = 0, where c(i) = +-1 for i>1, c(1) = t(1) = 1, t(i) = triangular numbers (A000217).
0, 0, 0, 1, 0, 1, 1, 2, 0, 6, 8, 13, 0, 33, 52, 105, 0, 310, 485, 874, 0, 2974, 5240, 9488, 0, 30418, 55715, 104730, 0, 352467, 642418, 1193879, 0, 4165910, 7762907, 14493951, 0, 50621491, 95133799, 179484713, 0, 637516130, 1202062094, 2273709847, 0, 8173584069
Offset: 1
Keywords
Examples
a(8) = 2 because there are two solutions: 1 - 3 + 6 + 10 + 15 - 21 + 28 - 36 = 1 - 3 - 6 + 10 - 15 + 21 + 28 - 36 = 0.
Links
- Alois P. Heinz and Ray Chandler, Table of n, a(n) for n = 1..633 (first 280 terms from Alois P. Heinz)
Crossrefs
Cf. A000217.
Programs
-
Maple
b:= proc(n, i) option remember; local m; m:= (2+(3+i)*i)*i/6; `if`(n>m, 0, `if`(n=m, 1, b(abs(n-i*(i+1)/2), i-1) +b(n+i*(i+1)/2, i-1))) end: a:= n-> `if`(irem(n, 4)=1, 0, b(n*(n+1)/2, n-1)): seq(a(n), n=1..40); # Alois P. Heinz, Oct 31 2011
-
Mathematica
b[n_, i_] := b[n, i] = With[{m = (2+(3+i)*i)*i/6}, If[n>m, 0, If[n == m, 1, b[Abs[n - i*(i+1)/2], i-1] + b[n + i*(i+1)/2, i-1]]]]; a[n_] := If[Mod[n, 4] == 1, 0, b[n*(n+1)/2, n-1]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jan 30 2017, after Alois P. Heinz *)
Formula
a(n) = [x^(n*(n+1)/2)] Product_{k=1..n-1} (x^(k*(k+1)/2) + 1/x^(k*(k+1)/2)). - Ilya Gutkovskiy, Feb 01 2024
Extensions
More terms from Sascha Kurz, Oct 13 2001
More terms from Alois P. Heinz, Oct 31 2011