A062250 Number of cyclic subgroups of Chevalley group A_n(2) (the group of nonsingular n X n matrices over GF(2) ).
1, 5, 79, 6974, 2037136, 2890467344, 14011554132032, 325330342132674560, 27173394819858612320256, 10158190320726534408118452224, 13156630408268153048253765001412608, 80280189722884518774834501142737770774528
Offset: 1
Keywords
Examples
a(3) = 1/phi(1)+21/phi(2)+56/phi(3)+42/phi(4)+48/phi(7) = 79.
References
- V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.
Links
- V. Jovovic, Cycle index of general linear group GL(n,2)
Crossrefs
Formula
a(n) = Sum_{d} |{g element of A_n(2): order(g)=d}|/phi(d), where phi=Euler totient function, cf. A000010.
Extensions
More terms from Vladeta Jovovic, Jul 04 2001