cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A062250 Number of cyclic subgroups of Chevalley group A_n(2) (the group of nonsingular n X n matrices over GF(2) ).

Original entry on oeis.org

1, 5, 79, 6974, 2037136, 2890467344, 14011554132032, 325330342132674560, 27173394819858612320256, 10158190320726534408118452224, 13156630408268153048253765001412608, 80280189722884518774834501142737770774528
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 01 2001

Keywords

Examples

			a(3) = 1/phi(1)+21/phi(2)+56/phi(3)+42/phi(4)+48/phi(7) = 79.
		

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

Formula

a(n) = Sum_{d} |{g element of A_n(2): order(g)=d}|/phi(d), where phi=Euler totient function, cf. A000010.

Extensions

More terms from Vladeta Jovovic, Jul 04 2001

A062552 Number of cyclic subgroups of Chevalley group A_n(4) (the group of nonsingular n X n matrices over GF(4) ).

Original entry on oeis.org

2, 74, 37820, 332797040, 42906753609728, 96807463594555409408, 3287060262175777407524421632, 1849558511978449242738396356403003392, 16381469636294717667541649667987962803817283584, 2439141663752697521176587375190791943802198154311477755904
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 02 2001

Keywords

Crossrefs

Formula

a(n) = Sum_{d} |{g element of A_n(4): order(g)=d}| / phi(d), where phi is the Euler totient function. - Sean A. Irvine, Aug 07 2022

Extensions

More terms from Vladeta Jovovic, Jul 05 2001
More terms from Sean A. Irvine, Aug 07 2022

A062314 Number of cyclic subgroups of the group SL(n,3) (the group of nonsingular n X n matrices over GF(3) with determinant 1 ).

Original entry on oeis.org

1, 13, 1796, 2240398
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 05 2001

Keywords

Crossrefs

Cf. A058502.
Showing 1-3 of 3 results.