A058521 B-trees of order 5 with n labeled leaves.
1, 1, 1, 2, 3, 4, 7, 11, 20, 36, 67, 121, 215, 377, 657, 1154, 2045, 3666, 6628, 12063, 22079, 40642, 75264, 140191, 262457, 493297, 929703, 1754941, 3314509, 6258052, 11803995, 22232306, 41801393, 78453563, 146987053, 274957984
Offset: 1
Keywords
Programs
-
Maple
spec := [ B, {B=Union(Z, Subst(M, B)), M=Union(Prod(Z,Z),Prod(Z,Z,Z),Prod(Z$4),Prod(Z$5))} ]: [seq(combstruct[count](spec, size=n), n=1..40)];
-
Mathematica
nn=38;f[x_]:=Sum[a[n]x^n,{n,0,nn}];a[0]=0;sol=SolveAlways[0==Series[f[x]-x-f[x^2+x^3+x^4+x^5],{x,0,nn}],x];Table[a[n],{n,0,nn}]/.sol (* Geoffrey Critzer, Mar 28 2013 *)
Formula
G.f. A(x) satisfies: A(x) = x + A(x^2+x^3+x^4+x^5). [Geoffrey Critzer, Mar 28 2013]