A058527 Number of 2n X 2n 0-1 matrices with n ones in each row and each column.
1, 2, 90, 297200, 116963796250, 6736218287430460752, 64051375889927380035549804336, 108738182111446498614705217754614976371200, 34812290428176298285394893936773707951192224124239796250, 2188263032066768922535710968724036448759525154977348944382853301460850000
Offset: 0
Keywords
Links
- Vladeta Jovovic, Nov 12 2006, Table of n, a(n) for n = 0..15
- A Conflitti, C. M. Da Fonseca, and R. Mamede, The maximal length of a chain in the Bruhat order for a chain of binary matrices., Lin. Algebra Applic. (2011)
- Alessandro Conflitti, C. M. da Fonseca and Ricardo Mamede, On the largest size of an antichain in the Bruhat order for A(2k, k).
- Alessandro Conflitti, C. M. da Fonseca and Ricardo Mamede, On the Largest Size of an Antichain in the Bruhat Order for A(2k,k), ORDER, 2011, DOI: 10.1007/s11083-011-9241-1.
- Jonathan Jedwab and Tabriz Popatia, A new representation of mutually orthogonal frequency squares, Simon Fraser University (Burnaby, BC, Canada, 2020).
- M. A. Khojastepour and M. Farajzadeh-Tehrani, Characterizing per Node Degrees of Freedom in an Interference Network, 2014; also 2014 IEEE International Symposium on Information Theory, pp. 1016-1020.
- B. D. McKay, 0-1 matrices with constant row and column sums
- Michael Penn, A not so magic square..., YouTube video, 2021.
- Wikipedia, Dynamic programming
Extensions
More terms (using dynamic programming in Python) from Greg Kuperberg, Feb 08 2001
More terms from Vladeta Jovovic, Nov 12 2006