Greg Kuperberg has authored 3 sequences.
A060050
Number of irreducible nonpositively curved triangulations of an n-gon: All internal vertices have at valence at least 6 and no diagonals of the n-gon are allowed.
Original entry on oeis.org
0, 1, 0, 0, 1, 1, 5, 13, 46, 155, 561, 2068, 7871, 30586, 121391, 490196, 2011422, 8370698, 35285987, 150485667, 648653910, 2823402675, 12400659846, 54920758496, 245126368841, 1101983749921, 4987538210079, 22716326086134
Offset: 2
c(8) = 5 = 1+4. We can divide the octagon into 8 pie slices and we can split any pair of opposite radii of this triangulation into two triangles.
A060049
Triangulations of an n-gon such that each internal vertex has valence at least 6, i.e., nonpositively curved triangulations.
Original entry on oeis.org
1, 0, 1, 1, 2, 5, 15, 50, 181, 697, 2821, 11892, 51874, 232974, 1073070, 5053029, 24264565, 118570292, 588567257, 2963358162, 15114174106, 78004013763, 406971280545, 2144659072330, 11407141925639, 61197287846831
Offset: 0
a(6) = 15 because there are 14 = A000108(4) triangulations without internal vertices, plus the triangulation with 6 pie slices.
- Bruce Westbury, Table of n, a(n) for n = 0..39
- Greg Kuperberg, Spiders for rank 2 Lie algebras, arXiv:q-alg/9712003, 1997.
- Greg Kuperberg, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996), 109-151.
- Bruce W. Westbury, Enumeration of non-positive planar trivalent graphs, arXiv:math/0507112 [math.CO], 2005.
- Bruce W. Westbury, Enumeration of non-positive planar trivalent graphs, J. Algebraic Combin. 25 (2007)
A059710
Dimension of space of invariants of n-th tensor power of 7-dimensional irreducible representation of G_2. Also the number of n-leaf, otherwise trivalent graphs in a disk such that all faces have at least 6 sides.
Original entry on oeis.org
1, 0, 1, 1, 4, 10, 35, 120, 455, 1792, 7413, 31780, 140833, 641928, 3000361, 14338702, 69902535, 346939792, 1750071307, 8958993507, 46484716684, 244187539270, 1297395375129, 6965930587924, 37766629518625
Offset: 0
G.f. = 1 + x^2 + x^3 + 4*x^4 + 10*x^5 + 35*x^6 + 120*x^7 + 455*x^8 + ...
- Alec Mihailovs, A Combinatorial Approach to Representations of Lie Groups and Algebras, Birkhäuser Boston (2003).
- Michael De Vlieger, Table of n, a(n) for n = 0..1200
- Georgia Benkart and A. Elduque, Cross products, invariants, and centralizers, arXiv preprint arXiv:1606.07588 [math.RT], 2016.
- Alin Bostan, Jordan Tirrell, Bruce W. Westbury, and Yi Zhang, On sequences associated to the invariant theory of rank two simple Lie algebras, arXiv:1911.10288 [math.CO], 2019.
- Alin Bostan, Jordan Tirrell, Bruce W. Westbury, and Yi Zhang, On some combinatorial sequences associated to invariant theory, arXiv:2110.13753 [math.CO], 2021.
- Juan B. Gil and Jordan O. Tirrell, A simple bijection for classical and enhanced k-noncrossing partitions, arXiv:1806.09065 [math.CO], 2018. Also Discrete Mathematics (2019) Article 111705. doi:10.1016/j.disc.2019.111705
- G. Kuperberg, Spiders for rank 2 Lie algebras, arXiv:q-alg/9712003, 1997.
- G. Kuperberg, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996), 109-151.
- Gilles Lachaud, The distribution of the trace in the compact group of type G_2, in Arithmetic Geometry: Contemporary Mathematics (2019) Vol. 722, 79-103.
- Q. Lu, W. Zheng, and Z. Zheng, On the distribution of Jacobi sums, arXiv:1305.3405 [math.NT], 2013.
- Robert Scherer, A criterion for asymptotic sharpness in the enumeration of simply generated trees, arXiv:2003.07984 [math.CO], 2020.
- Robert Scherer, Topics in Number Theory and Combinatorics, Ph. D. Dissertation, Univ. of California Davis (2021).
- Bruce W. Westbury, Enumeration of non-positive planar trivalent graphs, arXiv:math/0507112 [math.CO], 2005.
- Bruce W. Westbury, Enumeration of non-positive planar trivalent graphs, J. Algebraic Combin. 25 (2007).
- Bruce W. Westbury, Finding recurrence relation for a sequence of polynomials (2010).
- Bruce W. Westbury, Invariant tensors and the cyclic sieving phenomenon, El. J. Combinat. 23 (4) (2016) P4.2
The analogous sequence for A_1 is
A000108.
-
c := x^2*y+x^3*y+x*y+x*y^2+y^2+x^3+x^4: mc := p->expand((p*c-subs(x=0,p*c)-subs(y=0,p*c))/x/y): g2 := proc(n) option remember; global x,y,c,mc; expand((mc(g2(n-1))-subs(x=0,mc(g2(n-1))))/x-subs(x=0,g2(n-1))) end: g2(0) := 1: a := seq(subs(x=0,y=0,g2(n)),n=0..50);
A059710:=rsolve({(n+5)*(n+6)*A(n)=2*(n-1)*(2*n+5)*A(n-1)+(n-1)*(19*n+18)*A(n-2)+14*(n-1)*(n-2)*A(n-3),A(0)=1,A(1)=0,A(2)=1},A(n),makeproc);
# See Mihailovs reference for proof that this program is correct.
# Alec Mihailovs, Jun 17 2003
-
a[0] = 1; a[1] = 0; a[2] = 1; a[n_] := a[n] = (2*(n-1)*(2*n + 5)*a[n-1] + (n-1)*(19*n + 18)*a[n-2] + 14*(n-1)*(n-2)*a[n-3])/((n + 5)*(n + 6));
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Nov 17 2017 *)
-
{a(n) = if( n<1, n==0, (2*(n-1)*(2*n+5) * a(n-1) + (n-1)*(19*n+18) * a(n-2) + 14*(n-1)*(n-2) * a(n-3)) / ((n+5)*(n+6)))}; /* Michael Somos, Oct 28 2013 */
Removed "word" keyword because it is not appropriate. - Kang Seonghoon (lifthrasiir(AT)gmail.com), Oct 10 2008
Comments