cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Greg Kuperberg

Greg Kuperberg's wiki page.

Greg Kuperberg has authored 3 sequences.

A060050 Number of irreducible nonpositively curved triangulations of an n-gon: All internal vertices have at valence at least 6 and no diagonals of the n-gon are allowed.

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 5, 13, 46, 155, 561, 2068, 7871, 30586, 121391, 490196, 2011422, 8370698, 35285987, 150485667, 648653910, 2823402675, 12400659846, 54920758496, 245126368841, 1101983749921, 4987538210079, 22716326086134
Offset: 2

Author

Greg Kuperberg, Feb 15 2001

Keywords

Examples

			c(8) = 5 = 1+4. We can divide the octagon into 8 pie slices and we can split any pair of opposite radii of this triangulation into two triangles.
		

Crossrefs

Formula

The g.f. C(x) is derived from the g.f. B(x) of A060049 by B_1(x) = C_1(B_1(x))+x, where B_1(x) = B(x)/x and C_1(x) = C(x)/x.

A060049 Triangulations of an n-gon such that each internal vertex has valence at least 6, i.e., nonpositively curved triangulations.

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 15, 50, 181, 697, 2821, 11892, 51874, 232974, 1073070, 5053029, 24264565, 118570292, 588567257, 2963358162, 15114174106, 78004013763, 406971280545, 2144659072330, 11407141925639, 61197287846831
Offset: 0

Author

Greg Kuperberg, Feb 15 2001

Keywords

Comments

This is the connected version of A059710 in the following sense. Let C(x) be the ordinary generating function for this sequence and A(x) the ordinary generating function for A059710. Then these satisfy the functional equation A(x) = C(x*A(x)). - Bruce Westbury, Nov 05 2013

Examples

			a(6) = 15 because there are 14 = A000108(4) triangulations without internal vertices, plus the triangulation with 6 pie slices.
		

Crossrefs

Cf. A059710.

Formula

The g.f. B(x) is derived from the g.f. A(x) of A059710 by A(x) = A(x*B(x))+1.

A059710 Dimension of space of invariants of n-th tensor power of 7-dimensional irreducible representation of G_2. Also the number of n-leaf, otherwise trivalent graphs in a disk such that all faces have at least 6 sides.

Original entry on oeis.org

1, 0, 1, 1, 4, 10, 35, 120, 455, 1792, 7413, 31780, 140833, 641928, 3000361, 14338702, 69902535, 346939792, 1750071307, 8958993507, 46484716684, 244187539270, 1297395375129, 6965930587924, 37766629518625
Offset: 0

Author

Greg Kuperberg, Feb 08 2001

Keywords

Comments

Related to triangulations of an n-gon such that all internal vertices have valence at least 6.
This sequence arises from the sequence G_2 polynomials in q when q is replaced by 1. The sequence of degrees of these q-polynomials (Westbury 2010) is A227849. - Michael Somos, Nov 01 2013

Examples

			G.f. = 1 + x^2 + x^3 + 4*x^4 + 10*x^5 + 35*x^6 + 120*x^7 + 455*x^8 + ...
		

References

  • Alec Mihailovs, A Combinatorial Approach to Representations of Lie Groups and Algebras, Birkhäuser Boston (2003).

Crossrefs

The analogous sequence for A_1 is A000108.
See A060049 for related primitive diagrams, A227849.

Programs

  • Maple
    c := x^2*y+x^3*y+x*y+x*y^2+y^2+x^3+x^4: mc := p->expand((p*c-subs(x=0,p*c)-subs(y=0,p*c))/x/y): g2 := proc(n) option remember; global x,y,c,mc; expand((mc(g2(n-1))-subs(x=0,mc(g2(n-1))))/x-subs(x=0,g2(n-1))) end: g2(0) := 1: a := seq(subs(x=0,y=0,g2(n)),n=0..50);
    A059710:=rsolve({(n+5)*(n+6)*A(n)=2*(n-1)*(2*n+5)*A(n-1)+(n-1)*(19*n+18)*A(n-2)+14*(n-1)*(n-2)*A(n-3),A(0)=1,A(1)=0,A(2)=1},A(n),makeproc);
    # See Mihailovs reference for proof that this program is correct.
    # Alec Mihailovs, Jun 17 2003
  • Mathematica
    a[0] = 1; a[1] = 0; a[2] = 1; a[n_] := a[n] = (2*(n-1)*(2*n + 5)*a[n-1] + (n-1)*(19*n + 18)*a[n-2] + 14*(n-1)*(n-2)*a[n-3])/((n + 5)*(n + 6));
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Nov 17 2017 *)
  • PARI
    {a(n) = if( n<1, n==0, (2*(n-1)*(2*n+5) * a(n-1) + (n-1)*(19*n+18) * a(n-2) + 14*(n-1)*(n-2) * a(n-3)) / ((n+5)*(n+6)))}; /* Michael Somos, Oct 28 2013 */

Formula

Limit_{n->oo} a(n+1)/a(n) = 7.
a(0)=1, a(1)=0, a(2)=1 and (n+5)*(n+6)*a(n) = 2*(n-1)*(2*n+5)*a(n-1)+(n-1)*(19*n+18)*a(n-2)+14*(n-1)*(n-2)*a(n-3) for n > 2. - Alec Mihailovs (alec(AT)mihailovs.com), Feb 12 2005
Let f(n) = a(n+3)*a(n+4)*a(n+5) - 15 * a(n+4)^2*a(n+3) ... - 2744 * a(n+2)*a(n+1)*a(n), a homogeneous cubic polynomial in {a(n), a(n+1), ..., a(n+5)} with 40 terms. Then f(n) = 0 unless n = -3. - Michael Somos, Nov 01 2013
Let g(n) = 30 * a(n+3)^2*a(n+4) - 450 * a(n+3)^4 ... - 76832 * a(n+2)*a(n+1)*a(n)^2, a homogeneous quartic polynomial in {a(n), a(n+1), ..., a(n+4)} with 56 terms. Then g(n) = 0 unless n = -3. - Michael Somos, Nov 01 2013
O.g.f.: -(1-7*x)^(4/3)*(x+1)^2*(1+2*x)^(2/3)*hypergeom([-2/3, 7/3],[2],-27*x*(x+1)^2/((1+2*x)*(7*x-1)^2))/(6*x^5)+(28*x^4+66*x^3+46*x^2+15*x+1)/(6*x^5). - Mark van Hoeij, Jul 26 2021

Extensions

Removed "word" keyword because it is not appropriate. - Kang Seonghoon (lifthrasiir(AT)gmail.com), Oct 10 2008