cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A095922 Dimension of invariants of n-th tensor power of 5-dimensional irreducible representation of B_2.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 15, 15, 105, 190, 945, 2410, 10263, 31890, 127699, 444458, 1751685, 6518736, 25807445, 100152288, 401449271, 1602902055, 6519160851, 26580508625, 109656966853, 454524861846, 1899821492925, 7982263725826, 33757439931675
Offset: 0

Views

Author

Alec Mihailovs (alec(AT)mihailovs.com), Jul 11 2004

Keywords

Comments

The analogous sequence for G_2 is A059710.

Examples

			a(2)=1 because SO(5) has unique (up to multiplication by a constant) invariant in V ⊗ V - the quadratic form x^2+y^2+z^2+u^2+v^2.
		

References

  • Alec Mihailovs, A Combinatorial Approach to Representations of Lie Groups and Algebras, Springer-Verlag New York (2004).

Crossrefs

Programs

  • Maple
    ca:=n->binomial(n+n,n)/(n+1); a:=n->add(ca(i)*ca(i+1)*binomial(n,2*i),i=0..floor(n/2))- add(ca(i)^2*binomial(n,2*i-1),i=0..floor((n+1)/2)); seq(a(n),n=0..40);
    A095922:=rsolve({(n+3)*(n+4)*A(n)=3*(n-1)*(n+2)*A(n-1)+(n-1)*(13*n+4)*A(n-2)-15*(n-1)*(n-2)*A(n-3),A(0)=1,A(1)=0,A(2)=1},A(n),makeproc);
  • Mathematica
    t = {0, 1, 0}; Do[AppendTo[ t, (3 (n - 1) (n + 2) t[[n - 1]] + (n - 1) (13 n + 4) t[[n - 2]] - 15 (n - 1) (n - 2) t[[n - 3]])/((n + 3) (n + 4))], {n, 4, 25}]; t = Join[{1}, t] (* T. D. Noe, Apr 11 2014 *)
    a[n_] := -n*HypergeometricPFQ[{3/2, 1/2 - n/2, 1 - n/2}, {3, 3}, 16] + HypergeometricPFQ[{3/2, 1/2 - n/2, -n/2}, {2, 3}, 16]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Oct 03 2016 *)

Formula

a(n) =sum(A000108(i)*A000108(i+1)*binomial(n, 2*i), i=0..floor(n/2)) - sum(A000108(i)^2*binomial(n, 2*i-1), i=0..floor((n+1)/2)); exponential generating function = exp(t)*b(t) where b(t) is the exponential generating function of the sequence B(n) = (-1)^n*A000108(floor((n+1)/2))*A000108(floor(n/2+1)).
a(0)=1, a(1)=0, a(2)=1 and (n+3)(n+4)a(n)=3(n-1)(n+2)a(n-1)+(n-1)(13n+4)a(n-2)-15(n-1)(n-2)a(n-3) for n>2.
a(n) ~ 3 * 5^(n+5) / (128*Pi*n^5). - Vaclav Kotesovec, Oct 03 2016

A060049 Triangulations of an n-gon such that each internal vertex has valence at least 6, i.e., nonpositively curved triangulations.

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 15, 50, 181, 697, 2821, 11892, 51874, 232974, 1073070, 5053029, 24264565, 118570292, 588567257, 2963358162, 15114174106, 78004013763, 406971280545, 2144659072330, 11407141925639, 61197287846831
Offset: 0

Views

Author

Greg Kuperberg, Feb 15 2001

Keywords

Comments

This is the connected version of A059710 in the following sense. Let C(x) be the ordinary generating function for this sequence and A(x) the ordinary generating function for A059710. Then these satisfy the functional equation A(x) = C(x*A(x)). - Bruce Westbury, Nov 05 2013

Examples

			a(6) = 15 because there are 14 = A000108(4) triangulations without internal vertices, plus the triangulation with 6 pie slices.
		

Crossrefs

Cf. A059710.

Formula

The g.f. B(x) is derived from the g.f. A(x) of A059710 by A(x) = A(x*B(x))+1.

A227849 a(n) = 2 * floor( 3/14 * n^2) if n even, a(n) = 2 * round( 3/14 * n^2) -1 if n odd.

Original entry on oeis.org

0, -1, 0, 3, 6, 9, 14, 21, 26, 33, 42, 51, 60, 71, 84, 95, 108, 123, 138, 153, 170, 189, 206, 225, 246, 267, 288, 311, 336, 359, 384, 411, 438, 465, 494, 525, 554, 585, 618, 651, 684, 719, 756, 791, 828, 867, 906, 945, 986, 1029, 1070, 1113, 1158, 1203, 1248
Offset: 0

Views

Author

Michael Somos, Oct 31 2013

Keywords

Comments

The degrees of the sequence of the G_2 polynomials defined by Bruce Westbury is conjectured to be a(n).

Examples

			G.f. = -x + 3*x^3 + 6*x^4 + 9*x^5 + 14*x^6 + 21*x^7 + 26*x^8 + 33*x^9 + ...
		

Crossrefs

Cf. A059710.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((x^8-2*x^7-2*x^6-2*x^3-2*x^2+x)/(x^9-2*x^8+x^7-x^2+2*x-1))); // G. C. Greubel, Aug 08 2018
  • Mathematica
    CoefficientList[Series[(x^8-2*x^7-2*x^6-2*x^3-2*x^2+x)/(x^9-2*x^8+x^7 - x^2+2*x-1), {x, 0, 50}], x] (* G. C. Greubel, Aug 08 2018 *)
    LinearRecurrence[{2,-1,0,0,0,0,1,-2,1},{0,-1,0,3,6,9,14,21,26},60] (* Harvey P. Dale, Jul 26 2022 *)
  • PARI
    {a(n) = (n%2*7 + 3*n^2) \ 14 * 2 - n%2}
    
  • PARI
    {a(n) = (3*n^2 - [0, 10, 12, 6, 6, 12, 10][n%7 + 1]) / 7}
    

Formula

G.f.: (x^8 - 2*x^7 - 2*x^6 - 2*x^3 - 2*x^2 + x) / (x^9 - 2*x^8 + x^7 - x^2 + 2*x - 1).
G.f.: -x * (1 + x) * (1 - 3*x + x^2 - x^3 + x^4 - 3*x^5 + x^6) / ((1 - x)^2 * (1 - x^7)).
a(-n) = a(n). a(n+7) = a(n) + 3*(2*n + 7).

A060050 Number of irreducible nonpositively curved triangulations of an n-gon: All internal vertices have at valence at least 6 and no diagonals of the n-gon are allowed.

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 5, 13, 46, 155, 561, 2068, 7871, 30586, 121391, 490196, 2011422, 8370698, 35285987, 150485667, 648653910, 2823402675, 12400659846, 54920758496, 245126368841, 1101983749921, 4987538210079, 22716326086134
Offset: 2

Views

Author

Greg Kuperberg, Feb 15 2001

Keywords

Examples

			c(8) = 5 = 1+4. We can divide the octagon into 8 pie slices and we can split any pair of opposite radii of this triangulation into two triangles.
		

Crossrefs

Formula

The g.f. C(x) is derived from the g.f. B(x) of A060049 by B_1(x) = C_1(B_1(x))+x, where B_1(x) = B(x)/x and C_1(x) = C(x)/x.

A247591 Dimension of invariants of 2n-th tensor power of 6-dimensional irreducible representation of A_3.

Original entry on oeis.org

1, 1, 3, 16, 126, 1296, 16071, 228514, 3607890, 61891050, 1135871490, 22049362440, 448790912004, 9512960347260, 208858963314735, 4728736078065810, 110006925920592810, 2621619942885055530, 63840054782606886630, 1585094577104979776880, 40054740803371374834780, 1028483346608802276173280
Offset: 0

Views

Author

Paul Zinn-Justin, Sep 20 2014

Keywords

Comments

The 6-dimensional representation is the usual representation of SO(6)=A_3.

Examples

			For 2n=6, there are 15 invariants corresponding to all ways of pairing the 6 indices with the metric tensor, plus one invariant which is the completely skew-symmetric 6-index tensor.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 1; a[n_] := a[n] = (4*n*(2*n-1)*(5*n+7)*a[n-1] - 36*(n-1)*(2*n-3)*(2*n-1)*a[n-2]) / ((n+2)*(n+3)^2); Table[a[n], {n, 0, 21}]
  • PARI
    N=66; v=vector(N); v[1]=1; v[2]=1;
    for(n=2, N-1, my(t=n+1); v[t] = (-36*(n-1)*(2*n-3)*(2*n-1)*v[t-2] + 4*n*(2*n-1)*(5*n+7)*v[t-1]) / ((n+2)*(n+3)^2) );
    v \\ Joerg Arndt, Sep 20 2014

Formula

a(n) = (-36*(n-1)*(2*n-3)*(2*n-1)*a(n-2) + 4*n*(2*n-1)*(5*n+7)*a(n-1)) / ((n+2)*(n+3)^2).
a(n) = (9*(n+1)*A005802(n)-(n+5)*A005802(n+1))*binomial(2*n,n)/(2*(n+1)*(n+2)). - Mark van Hoeij, Nov 12 2023

A353173 Dimension of space of invariants of n-th tensor power of the 26-dimensional fundamental (or "standard") irreducible representation of F_4.

Original entry on oeis.org

1, 0, 1, 1, 5, 15, 70, 330, 1820, 10858, 70875, 497135, 3727955, 29658410, 248989676, 2194891440, 20231692430, 194286848280, 1937546532820, 20008993160460, 213436182918652, 2346406693816315, 26531060178217182, 307987244037724262, 3664579007885995952
Offset: 0

Views

Author

David A. Madore, Apr 28 2022

Keywords

Comments

It is known that a(n) satisfies a linear recurrence relation with polynomial coefficients. The limit of a(n+1)/a(n) is 26.

Examples

			a(1)=0 because there is no F_4-invariant linear form on the 26-dimensional representation; a(2)=1 because there is, up to scalars, precisely one invariant quadratic form.
		

Crossrefs

The analogous sequence for the (52-dimensional) adjoint representation of F_4 is: A179685.
A similar sequence for G_2 (for its 7-dimensional fundamental irreducible representation) is: A059710.
A similar sequence for B_2 (for its standard 5-dimensional irreducible representation) is: A095922.
For A_n the similar sequence (omitting some 0's) is given by the (n+1)-dimensional Catalan numbers, e.g., A005789 for A_2.

Programs

  • LiE
    p_tensor(n,[0,0,0,1],F4)|[0,0,0,0] # Returns the value of a(n).
Showing 1-6 of 6 results.