A058669 Triangle T(n,k) read by rows, giving number of matroids of rank k on n labeled points (n >= 0, 0 <= k <= n).
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 36, 15, 1, 1, 31, 171, 171, 31, 1, 1, 63, 813, 2053, 813, 63, 1, 1, 127, 4012, 33442, 33442, 4012, 127, 1, 1, 255, 20891, 1022217, 8520812, 1022217, 20891, 255, 1, 1, 511
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows: 1; 1, 1; 1, 3, 1; 1, 7, 7, 1; 1, 15, 36, 15, 1; 1, 31, 171, 171, 31, 1; 1, 63, 813, 2053, 813, 63, 1; 1, 127, 4012, 33442, 33442, 4012, 127, 1; 1, 255, 20891, 1022217, 8520812, 1022217, 20891, 255, 1; ...
Links
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
- Index entries for sequences related to matroids
Crossrefs
Formula
From Petros Hadjicostas, Oct 10 2019: (Start)
T(n,0) = 1 for n >= 0.
T(n,1) = 2^n - 1 for n >= 1. [Dukes (2004), Theorem 2.1 (ii).]
T(n,k) = Sum_{m = k..n} binomial(n,m) * A058711(m,k) for n >= k. [Dukes (2004), see the equations before Theorem 2.1.]
(End)