cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A058681 Number of matroids of rank 2 on n labeled points.

Original entry on oeis.org

0, 0, 1, 7, 36, 171, 813, 4012, 20891, 115463, 677546, 4211549, 27640341, 190891130, 1382942161, 10480109379, 82864804268, 682076675087, 5832741942913, 51724157711084, 474869815108175, 4506715736350171, 44152005850890042, 445958869286416681, 4638590332213222137
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2000

Keywords

Comments

Number of partitions of {1, 2, ..., n+1} in which at least one block of each partition contains a pair of nonconsecutive integers. E.g., B(4)-2^3 = 7: there are 7 partitions of {1,2,3,4} in which some block contains a pair of nonconsecutive integers, namely 124/3, 134/2, 14/23, 13/24, 13/2/4, 14/2/3, 1/24/3. - Augustine O. Munagi, Mar 20 2005
Number of complementing systems of subsets of {0, 1, ..., p^(n+1) - 1} (p a prime) in which at least one member is not of the form {0, x, 2x, ..., (c-1)x} for positive integers x and c. E.g., B(4)-p^3 = 7: there are 7 complementing systems of subsets of {0, 1, ..., p^4-1} in which at least one member is not of the form {0, x, 2x, ..., (c-1)*x}. Number of complementing systems of subsets of {0, 1, ..., p^4 - 1} reduces to B(4) and number of ordered factorizations of p^4 is p^3. - Augustine O. Munagi, Mar 20 2005
a(n) is the number of collections containing two or more nonempty subsets of {1,2,...,n} that are pairwise disjoint. - Geoffrey Critzer, Oct 10 2009

Examples

			a(3) = 7 because there are 7 collections (having more than one element)of nonempty subsets of {1,2,3} that are pairwise disjoint: {1}{2}; {1}{3}; {1}{2,3}; {2}{3}; {2}{1,3}; {1,2}{3}; {1}{2}{3}. - _Geoffrey Critzer_, Oct 10 2009
		

Crossrefs

Column k = 2 of A058669.
The triangle A340264 without the main diagonal provides a refinement of this sequence.
Cf. A005465.

Programs

  • Maple
    egf := exp(x + exp(x) - 1) - exp(2*x); ser := series(egf, x, 24):
    seq(simplify(n!*coeff(ser,x,n)), n=0..22); # Peter Luschny, Jan 08 2021
  • Mathematica
    f[n_] := Sum[ StirlingS2[n + 1, k+2], {k, 1, n}]; Table[ f[n], {n, 0, 23}] (* Zerinvary Lajos, Mar 21 2007 *)
    Table[BellB[n+1]-2^n,{n,0,30}] (* Harvey P. Dale, Oct 13 2011 *)
  • PARI
    a(n) = sum(k=1, n, stirling(n+1, k+2, 2)); \\ Ruud H.G. van Tol, May 09 2024
    
  • PARI
    my(x='x+O('x^33)); concat([0,0],Vec(serlaplace(exp(x + exp(x) - 1) - exp(2*x)))) \\ Joerg Arndt, May 10 2024

Formula

a(n) = B(n+1)-2^n, B = Bell numbers (A000110).
E.g.f.: d/dz (exp(exp(z)-1) - (1/2)*exp(2*z) - 1/2). - Thomas Wieder, Nov 30 2004
a(n) = Sum_{i=2..n} binomial(n,i)*(B(i)-1), B=Bell numbers A000110. - Geoffrey Critzer, Oct 10 2009
E.g.f.: exp(x + exp(x) - 1) - exp(2*x). - Peter Luschny, Jan 08 2021

Extensions

More terms from James Sellers, Jan 03 2001
a(0) = a(1) = 0 prepended by Peter Luschny, Jan 08 2021

A053534 Triangle T(n,k) giving number of pairwise non-isomorphic (i.e., unlabeled) matroids of rank k on n points (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 23, 38, 23, 6, 1, 1, 7, 37, 108, 108, 37, 7, 1, 1, 8, 58, 325, 940, 325, 58, 8, 1, 1, 9, 87, 1275, 190214, 190214, 1275, 87, 9, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2000

Keywords

Examples

			The triangle, transposed, begins:
k...n=0...n=1...n=2...n=3...n=4...n=5...n=6...n=7...n=8...n=9...
0.|.1.....1.....1.....1.....1.....1.....1.....1.....1.......1.....
1.|.......1.....2.....3.....4.....5.....6.....7.....8.......9.....
2.|.............1.....3.....7....13....23....37....58......87.....
3.|...................1.....4....13....38...108...325....1275.....
4.|.........................1.....5....23...108...940..190214.....
5.|...............................1.....6....37...325..190214.....
6.|.....................................1.....7....58....1275.....
7.|...........................................1.....8......87.....
8.|.................................................1.......9.....
9.|.........................................................1.....
Sum.1.....2.....4.....8....17....38....98...306..1724..383172
		

Crossrefs

Row sums give A055545.
Columns include (truncated versions of) A000012 (k=0), A000027 (k=1), A058682 (k=2), A058693 (k=3).

Formula

From Petros Hadjicostas, Oct 10 2019: (Start)
T(n,0) = 1 for n >= 0.
T(n,1) = n for n >= 1.
T(n,2) = -n + Sum_{k = 1..n} p(k) for n >= 2, where p(k) = A000041(k). [Dukes (2004), Theorem 2.1.] (End)

Extensions

More terms from Jonathan Vos Post, Feb 14 2007
Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar and Max Alekseyev

A058673 Number of matroids on n labeled points.

Original entry on oeis.org

1, 2, 5, 16, 68, 406, 3807, 75164, 10607540
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2000

Keywords

Comments

From Lorenzo Sauras Altuzarra, Aug 10 2023: (Start)
a(n) <= A014466(n).
a(n) <= A306020(n). (End)

Examples

			The 16 possible sets E such that ({1, 2, 3}, E) is a matroid:
  {{}}
  {{}, {1}}
  {{}, {2}}
  {{}, {3}}
  {{}, {1}, {2}}
  {{}, {1}, {3}}
  {{}, {2}, {3}}
  {{}, {1}, {2}, {3}}
  {{}, {1}, {2}, {1, 2}}
  {{}, {1}, {3}, {1, 3}}
  {{}, {2}, {3}, {2, 3}}
  {{}, {1}, {2}, {3}, {1, 2}, {1, 3}}
  {{}, {1}, {2}, {3}, {1, 2}, {2, 3}}
  {{}, {1}, {2}, {3}, {1, 3}, {2, 3}}
  {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}
  {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
		

Crossrefs

Row sums of A058669. Closely related to A114491.
Cf. A014466 (abstract simplicial complexes), A055545 (unlabeled matroids), A306020.

A256158 Triangular array of numbers of 2-polymatroids of rank k on n labeled points, for n>=0, 0<=k<=2n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 6, 3, 1, 1, 7, 29, 41, 29, 7, 1, 1, 15, 135, 477, 784, 477, 135, 15, 1, 1, 31, 642, 5957, 27375, 41695, 27375, 5957, 642, 31, 1, 1, 63, 3199, 87477, 1554077, 7109189, 21937982, 7109189, 1554077, 87477, 3199, 63, 1, 1, 127, 16879, 1604768, 189213842, 3559635761, 733133160992, 86322358307, 733133160992, 3559635761, 189213842, 1604768, 16879, 127, 1
Offset: 0

Views

Author

Max Alekseyev, Mar 16 2015

Keywords

Comments

The rows are symmetric: a(n,k) = a(n,2n-k).
Starting with n=7, the rows are not unimodal.

Examples

			Triangle starts with:
n=0: 1
n=1: 1 1 1
n=2: 1 3 6 3 1
n=3: 1 7 29 41 29 7 1
n=4: 1 15 135 477 784 477 135 15 1
n=5: 1 31 642 5957 27375 41695 27375 5957 642 31 1
n=6: 1 63 3199 87477 1554077 7109189 21937982 7109189 1554077 87477 3199 63 1
n=7: 1 127 16879 1604768 189213842 3559635761 733133160992 86322358307 733133160992 3559635761 189213842 1604768 16879 127 1
		

Crossrefs

A058687 Number of matroids of rank 3 on n labeled points.

Original entry on oeis.org

1, 15, 171, 2053, 33442, 1022217
Offset: 3

Views

Author

N. J. A. Sloane, Dec 30 2000

Keywords

Crossrefs

Column k=3 of A058669.
Showing 1-5 of 5 results.