cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A055545 Number of unlabeled matroids on n points.

Original entry on oeis.org

1, 2, 4, 8, 17, 38, 98, 306, 1724, 383172
Offset: 0

Views

Author

Keywords

Comments

This is the total number of pairwise non-isomorphic (i.e., "unlabeled") matroids on n points, with no restrictions on loops, parallel elements etc.
Partial sums of A058718. - Jonathan Vos Post, Apr 25 2010

References

  • J. G. Oxley, Matroid Theory. Oxford, England: Oxford University Press, 1993. See p. 473.

Crossrefs

Cf. A002773, A058673 (labeled matroids), A058718.
Row sums of A053534.

Extensions

a(9) from Gordon Royle, Dec 23 2006
Name clarified by Lorenzo Sauras Altuzarra, Aug 10 2023

A058669 Triangle T(n,k) read by rows, giving number of matroids of rank k on n labeled points (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 36, 15, 1, 1, 31, 171, 171, 31, 1, 1, 63, 813, 2053, 813, 63, 1, 1, 127, 4012, 33442, 33442, 4012, 127, 1, 1, 255, 20891, 1022217, 8520812, 1022217, 20891, 255, 1, 1, 511
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2000

Keywords

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
  1;
  1,   1;
  1,   3,     1;
  1,   7,     7,       1;
  1,  15,    36,      15,       1;
  1,  31,   171,     171,      31,       1;
  1,  63,   813,    2053,     813,      63,     1;
  1, 127,  4012,   33442,   33442,    4012,   127,   1;
  1, 255, 20891, 1022217, 8520812, 1022217, 20891, 255, 1;
  ...
		

Crossrefs

Row sums give A058673.
Columns include (truncated versions of) A000012 (k=0), A000225 (k=1), A058681 (k=2), A058687 (k=3).

Formula

From Petros Hadjicostas, Oct 10 2019: (Start)
T(n,0) = 1 for n >= 0.
T(n,1) = 2^n - 1 for n >= 1. [Dukes (2004), Theorem 2.1 (ii).]
T(n,2) = Bell(n+1) - 2^n = A000110(n+1) - A000079(n) for n >= 2. [Dukes (2004), Theorem 2.1 (ii).]
T(n,k) = Sum_{m = k..n} binomial(n,m) * A058711(m,k) for n >= k. [Dukes (2004), see the equations before Theorem 2.1.]
(End)

A058682 a(n) = p(0) + p(1) + ... + p(n) - n - 1, where p = partition numbers, A000041.

Original entry on oeis.org

0, 0, 1, 3, 7, 13, 23, 37, 58, 87, 128, 183, 259, 359, 493, 668, 898, 1194, 1578, 2067, 2693, 3484, 4485, 5739, 7313, 9270, 11705, 14714, 18431, 22995, 28598, 35439, 43787, 53929, 66238, 81120, 99096, 120732, 146746, 177930, 215267, 259849, 313022, 376282
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2000

Keywords

Comments

Number of non-isomorphic rank-2 matroids over S_n.
Starting (1, 3, 7, 13, ...) = row sums of triangle A171239. - Gary W. Adamson, Dec 05 2009

References

  • Acketa, Dragan M. "On the enumeration of matroids of rank-2." Zbornik radova Prirodnomatematickog fakulteta-Univerzitet u Novom Sadu 8 (1978): 83-90. - N. J. A. Sloane, Dec 04 2022

Crossrefs

Column k=2 of A053534.
Cf. A000041, A000065 (first differences), A000070.
Cf. A171239. - Gary W. Adamson, Dec 05 2009

Programs

  • GAP
    List([1..41],n->Sum([1..n-1],k->NrPartitions(k)-1)); # Muniru A Asiru, Aug 10 2018
  • Maple
    a:= proc(n) option remember; `if`(n<2, 0,
          combinat[numbpart](n)+a(n-1)-1)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 10 2019
  • Mathematica
    With[{s = PartitionsP /@ Range[0, 40]}, MapIndexed[Total@ Take[s, First@ #2] - First@ #2 &, s]] (* Michael De Vlieger, Sep 04 2017 *)
    With[{nn=50},#[[2]]-#[[1]]&/@Thread[{Range[0,nn],Accumulate[PartitionsP[Range[0,nn]]]}]]-1 (* Harvey P. Dale, Sep 05 2023 *)

Formula

G.f.: -1/(1 - x)^2 + (1/(1 - x))*Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Aug 10 2018

Extensions

Name clarified by Ilya Gutkovskiy, Aug 10 2018

A256156 Triangular array of numbers of 2-polymatroids of rank k on n unlabeled points, for n>=0, 0<=k<=2n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 10, 12, 10, 3, 1, 1, 4, 21, 49, 78, 49, 21, 4, 1, 1, 5, 39, 172, 584, 778, 584, 172, 39, 5, 1, 1, 6, 68, 573, 5236, 18033, 46661, 18033, 5236, 573, 68, 6, 1, 1, 7, 112, 1890, 72205, 971573, 149636721, 19498369, 149636721, 971573, 72205, 1890, 112, 7, 1
Offset: 0

Views

Author

Max Alekseyev, Mar 16 2015

Keywords

Comments

The rows are symmetric: a(n,k) = a(n,2n-k).
Starting with n=7, the rows are not unimodal.

Examples

			Triangle starts with:
n=0: 1
n=1: 1 1 1
n=2: 1 2 4 2 1
n=3: 1 3 10 12 10 3 1
n=4: 1 4 21 49 78 49 21 4 1
n=5: 1 5 39 172 584 778 584 172 39 5 1
n=6: 1 6 68 573 5236 18033 46661 18033 5236 573 68 6 1
n=7: 1 7 112 1890 72205 971573 149636721 19498369 149636721 971573 72205 1890 112 7 1
		

Crossrefs

A058693 Number of nonisomorphic matroids of rank 3 on n labeled points.

Original entry on oeis.org

1, 4, 13, 38, 108, 325, 1275, 10037, 298491, 31899134
Offset: 3

Views

Author

N. J. A. Sloane, Dec 30 2000

Keywords

Crossrefs

Column k=3 of A053534.

Extensions

a(9) from Petros Hadjicostas, Oct 10 2019 using the papers of Mayhew and Royle
a(10)-a(11) from Manfred Scheucher, Sep 02 2020
a(12) from Database of Matroids added by Andrey Zabolotskiy, Mar 26 2023

A336704 Number of nonisomorphic matroids of rank 4 on n labeled points.

Original entry on oeis.org

1, 5, 23, 108, 940, 190214, 4886380924
Offset: 4

Views

Author

Manfred Scheucher, Aug 31 2020

Keywords

Crossrefs

Column k=4 of A053534.
Cf. A058693.

Extensions

a(10) from Database of Matroids added by Andrey Zabolotskiy, Mar 26 2023
Showing 1-6 of 6 results.