cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A076766 Number of inequivalent binary linear codes of length n. Also the number of nonisomorphic binary matroids on an n-set.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 68, 148, 342, 848, 2297, 6928, 24034, 98854, 503137, 3318732, 29708814, 374039266, 6739630253, 173801649708, 6356255181216, 326203517516704, 23294352980140884, 2301176047764925736, 313285408199180770635, 58638266023262502962716
Offset: 0

Views

Author

Marcel Wild (mwild(AT)sun.ac.za), Nov 14 2002

Keywords

Examples

			a(2)=4 because there are four inequivalent linear binary 2-codes: {(0,0)}, {(0,0),(1,0)}, {(0,0),(1,1)}, {(0,0),(1,0),(0,1),(1,1)}. Observe that the codes {(0,0),(1,0)} and {(0,0),(0,1)} are equivalent because one arises from the other by a permutation of coordinates.
		

References

  • M. Wild, Enumeration of binary and ternary matroids and other applications of the Brylawski-Lucas Theorem, Preprint Nr. 1693, Tech. Hochschule Darmstadt, 1994.

Crossrefs

Row sums of triangle A076831. Cf. A034328, A055545.

Extensions

Edited by N. J. A. Sloane, Nov 01 2007, at the suggestion of Gordon Royle.

A002773 Number of nonisomorphic simple matroids (or geometries) with n points.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 26, 101, 950, 376467
Offset: 0

Views

Author

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 138.
  • Knuth, Donald E. "The asymptotic number of geometries." Journal of Combinatorial Theory, Series A 16.3 (1974): 398-400.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A055545, A056642. Row sums of A058730.

Formula

Limit_{ n -> oo } (log_2 log_2 a(n))/n = 1. [Knuth]
2^n/n^(3/2) << log a(n) << 2^n/n, proved by Knuth and Piff respectively. - Charles R Greathouse IV, Mar 20 2021
Bansal, Pendavingh, & van der Pol prove an upper bound almost matching the lower bound above: log a(n) <= 2*sqrt(2/Pi)*2^n/n^(3/2)*(1 + o(1)). - Charles R Greathouse IV, Mar 20 2021

Extensions

a(9) from Gordon Royle, Dec 23 2006

A053534 Triangle T(n,k) giving number of pairwise non-isomorphic (i.e., unlabeled) matroids of rank k on n points (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 23, 38, 23, 6, 1, 1, 7, 37, 108, 108, 37, 7, 1, 1, 8, 58, 325, 940, 325, 58, 8, 1, 1, 9, 87, 1275, 190214, 190214, 1275, 87, 9, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2000

Keywords

Examples

			The triangle, transposed, begins:
k...n=0...n=1...n=2...n=3...n=4...n=5...n=6...n=7...n=8...n=9...
0.|.1.....1.....1.....1.....1.....1.....1.....1.....1.......1.....
1.|.......1.....2.....3.....4.....5.....6.....7.....8.......9.....
2.|.............1.....3.....7....13....23....37....58......87.....
3.|...................1.....4....13....38...108...325....1275.....
4.|.........................1.....5....23...108...940..190214.....
5.|...............................1.....6....37...325..190214.....
6.|.....................................1.....7....58....1275.....
7.|...........................................1.....8......87.....
8.|.................................................1.......9.....
9.|.........................................................1.....
Sum.1.....2.....4.....8....17....38....98...306..1724..383172
		

Crossrefs

Row sums give A055545.
Columns include (truncated versions of) A000012 (k=0), A000027 (k=1), A058682 (k=2), A058693 (k=3).

Formula

From Petros Hadjicostas, Oct 10 2019: (Start)
T(n,0) = 1 for n >= 0.
T(n,1) = n for n >= 1.
T(n,2) = -n + Sum_{k = 1..n} p(k) for n >= 2, where p(k) = A000041(k). [Dukes (2004), Theorem 2.1.] (End)

Extensions

More terms from Jonathan Vos Post, Feb 14 2007
Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar and Max Alekseyev

A058673 Number of matroids on n labeled points.

Original entry on oeis.org

1, 2, 5, 16, 68, 406, 3807, 75164, 10607540
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2000

Keywords

Comments

From Lorenzo Sauras Altuzarra, Aug 10 2023: (Start)
a(n) <= A014466(n).
a(n) <= A306020(n). (End)

Examples

			The 16 possible sets E such that ({1, 2, 3}, E) is a matroid:
  {{}}
  {{}, {1}}
  {{}, {2}}
  {{}, {3}}
  {{}, {1}, {2}}
  {{}, {1}, {3}}
  {{}, {2}, {3}}
  {{}, {1}, {2}, {3}}
  {{}, {1}, {2}, {1, 2}}
  {{}, {1}, {3}, {1, 3}}
  {{}, {2}, {3}, {2, 3}}
  {{}, {1}, {2}, {3}, {1, 2}, {1, 3}}
  {{}, {1}, {2}, {3}, {1, 2}, {2, 3}}
  {{}, {1}, {2}, {3}, {1, 3}, {2, 3}}
  {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}
  {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
		

Crossrefs

Row sums of A058669. Closely related to A114491.
Cf. A014466 (abstract simplicial complexes), A055545 (unlabeled matroids), A306020.

A256157 Number of 2-polymatroids on n unlabeled points.

Original entry on oeis.org

1, 3, 10, 40, 228, 2380, 94495, 320863387
Offset: 0

Views

Author

Max Alekseyev, Mar 16 2015

Keywords

Crossrefs

Row sums of A256156.

A174743 Partial sums of A076766.

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 131, 279, 621, 1469, 3766, 10694, 34728, 133582, 636719, 3955451, 33664265, 407703531, 7147333784, 180948983492, 6537204164708, 332740721681412, 23627093701822296, 2324803141466748032, 315610211340647518667, 58953876234603150481383
Offset: 0

Views

Author

Jonathan Vos Post, Nov 30 2010

Keywords

Comments

Number of inequivalent binary linear codes of length <= n. Also the total number of nonisomorphic binary matroids on an k-set for all k <= n. The subsequence of primes is: 3, 7, 31, 131.

Examples

			a(14) = 1 + 2 + 4 + 8 + 16 + 32 + 68 + 148 + 342 + 848 + 2297 + 6928 + 24034 + 98854 + 503137 = 636719 is prime.
		

Crossrefs

Showing 1-6 of 6 results.