A056642
Number of linear spaces on n (labeled) points.
Original entry on oeis.org
1, 1, 2, 6, 32, 353, 8390, 433039, 50166354, 13480967630
Offset: 1
W. M. B. Dukes (dukes(AT)stp.dias.ie), Aug 28 2000
- L. M. Batten and A. Beutelspacher: The theory of finite linear spaces, Cambridge Univ. Press, 1993 (see the Appendix).
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 303, #42.
- J. Doyen, Sur le nombre d'espaces linéaires non isomorphes de n points, Bull. Soc. Math. Belg. 19 (1967), 421-437.
- J. A. Thas, Sur le nombre d'espaces linéaires non isomorphes de n points, Bull. Soc. Math. Belg. 21 (1969), 57-66.
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. Dukes, Bounds on the number of generalized partitions and some applications, Australas. J. Combin. 28 (2003), 257-261.
- W. M. B. Dukes, On the number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- Index entries for sequences related to matroids
A055545
Number of unlabeled matroids on n points.
Original entry on oeis.org
1, 2, 4, 8, 17, 38, 98, 306, 1724, 383172
Offset: 0
- J. G. Oxley, Matroid Theory. Oxford, England: Oxford University Press, 1993. See p. 473.
- Dragan M. Acketa, On the enumeration of matroids of rank-2, Zbornik radova Prirodnomatematickog fakulteta-Univerzitet u Novom Sadu 8 (1978): 83-90. - _N. J. A. Sloane_, Dec 04 2022
- Jayant Apte and J. M. Walsh, Constrained Linear Representability of Polymatroids and Algorithms for Computing Achievability Proofs in Network Coding, arXiv preprint arXiv:1605.04598 [cs.IT], 2016-2017.
- Jesus DeLoera, Yvonne Kemper, and Steven Klee, h-vectors of small matroid complexes, arXiv:1106.2576 [math.CO], 2011.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
- S. C. Locke, Matroids
- Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, arXiv:math/0702316 [math.CO], 2007.
- Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, J. Combin. Theory Ser. B 98(2) (2008), 415-431.
- Gordon Royle and Dillon Mayhew, 9-element matroids.
- Eric Weisstein's World of Mathematics, Matroid.
- Eric Weisstein's World of Mathematics, Graph Vertex.
- D. J. A. Welsh, A bound for the number of matroids, J. Combinat. Theory, Ser. A, 6 (1969), 313-316. - From _N. J. A. Sloane_, May 06 2012
- Index entries for sequences related to matroids
A058730
Triangle T(n,k) giving number of nonisomorphic simple matroids of rank k on n labeled points (n >= 2, 2 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 11, 4, 1, 1, 23, 49, 22, 5, 1, 1, 68, 617, 217, 40, 6, 1, 1, 383, 185981, 188936, 1092, 66, 7, 1, 1, 5249, 4884573865
Offset: 2
Triangle T(n,k) (with rows n >= 2 and columns k >= 2) begins as follows:
1;
1, 1;
1, 2, 1;
1, 4, 3, 1;
1, 9, 11, 4, 1;
1, 23, 49, 22, 5, 1;
1, 68, 617, 217, 40, 6, 1;
1, 383, 185981, 188936, 1092, 66, 7, 1;
...
From _Petros Hadjicostas_, Oct 09 2019: (Start)
Matsumoto et al. (2012, p. 36) gave an incomplete row n = 10 (starting at k = 2):
1, 5249, 4884573865, *, 4886374072, 9742, 104, 8, 1;
They also gave incomplete rows for n = 11 and n = 12.
(End)
- Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory. II. Combinatorial geometries, Studies in Appl. Math. 49 (1970), 109-133. [Annotated scanned copy of pages 126 and 127 only]
- Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory. II. Combinatorial geometries, Studies in Appl. Math. 49 (1970), 109-133.
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
- Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, arXiv:math/0702316 [math.CO], 2007. [See Table 2, p. 9.]
- Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, J. Combin. Theory Ser. B 98(2) (2008), 415-431. [See Table 2, p. 420.]
- Y. Matsumoto, S. Moriyama, H. Imai, and D. Bremmer, Matroid enumeration for incidence geometry, Discrete Comput. Geom. 47 (2012), 17-43.
- Gordon Royle and Dillon Mayhew, 9-element matroids.
- Index entries for sequences related to matroids
A114572
Number of "ultrasweet" Boolean functions of n variables which depend on all the variables.
Original entry on oeis.org
2, 1, 2, 6, 27, 185, 2135, 55129
Offset: 0
For all n>1, a function like "x2" is counted in A114491 but not in the present sequence.
A058731
Number of nonisomorphic simple matroids of rank 3 on n unlabeled points.
Original entry on oeis.org
0, 0, 0, 1, 2, 4, 9, 23, 68, 383, 5249, 232928, 28872972
Offset: 0
- Mohamed Barakat, Reimer Behrends, Christopher Jefferson, Lukas Kühne, Martin Leuner, On the generation of rank 3 simple matroids with an application to Terao's freeness conjecture, arXiv:1907.01073 [math.CO], 2019.
- Crapo, Henry H.; Rota, Gian-Carlo; On the foundations of combinatorial theory. II. Combinatorial geometries, Studies in Appl. Math. 49 1970 109-133. [Annotated scanned copy of pages 126 and 127 only]
- W. M. B. Dukes, Tables of matroids
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- Index entries for sequences related to matroids
Equals
A001200 - 1 (see that entry for further information).
A058733
Number of nonisomorphic simple matroids of rank 4 on n labeled points.
Original entry on oeis.org
1, 3, 11, 49, 617, 185981
Offset: 4
- Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory. II. Combinatorial geometries, Studies in Appl. Math. 49 (1970), 109-133. [Annotated scanned copy of pages 126 and 127 only]
- Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory. II. Combinatorial geometries, Studies in Appl. Math. 49 (1970), 109-133.
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
- Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, arXiv:math/0702316 [math.CO], 2007. [See Table 2, p. 9.]
- Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, J. Combin. Theory Ser. B 98(2) (2008), 415-431. [See Table 2, p. 420.]
- Gordon Royle and Dillon Mayhew, 9-element matroids.
- Index entries for sequences related to matroids
Showing 1-6 of 6 results.
Comments