Original entry on oeis.org
1, 1, 2, 6, 32, 353, 8390, 436399, 50468754
Offset: 1
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 303, #42.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A001200
Number of linear geometries on n (unlabeled) points.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 10, 24, 69, 384, 5250, 232929, 28872973
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 303, #42.
- CRC Handbook of Combinatorial Designs, 1996, pp. 216, 697.
- J. Doyen, Sur le nombre d'espaces linéaires non isomorphes de n points. Bull. Soc. Math. Belg. 19 1967 421-437.
- P. Robillard, On the weighted finite linear spaces. Bull. Soc. Math. Belg. 22 (1970), 227-241.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Mohamed Barakat, Reimer Behrends, Christopher Jefferson, Lukas Kühne, Martin Leuner, On the generation of rank 3 simple matroids with an application to Terao's freeness conjecture, arXiv:1907.01073 [math.CO], 2019.
- A. Betten and D. Betten, Linear spaces with at most 12 points, J. Combinatorial Designs, Volume 7, 1999, pp. 119 - 145.
- J. E. Blackburn, H. H. Crapo, and D. A. Higgs, A catalogue of combinatorial geometries, Math. Comp 27 1973 155-166.
- J. Doyen, Sur le nombre d'espaces linéaires non isomorphes de n points [Annotated and scanned copy]
- D. G. Glynn, Rings of geometries II, J. Combin. Theory, A 49 (1988), 26-66.
- D. G. Glynn, A geometrical isomorphism algorithm, Bull. ICA 7 (1993), 36-38.
- Robert Haas, Cographs, arXiv:1905.12627 [math.GM], 2019.
- G. Heathcote, Linear spaces on 16 points, J. Combin. Designs, Vol. 1, No. 5 (1993), 359-378.
- Nathan Kaplan, Susie Kimport, Rachel Lawrence, Luke Peilen and Max Weinreich, Counting arcs in projective planes via Glynn's algorithm, J. Geom. 108, No. 3, 1013-1029 (2017).
- Ch. Pietsch, On the classification of linear spaces of order 11, J. Comb. Designs, Vol. 3, No. 3 (1995), 185-193.
A058710
Triangle T(n,k) giving number of loopless matroids of rank k on n labeled points (n >= 0, 0 <= k <= n).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 14, 11, 1, 0, 1, 51, 106, 26, 1, 0, 1, 202, 1232, 642, 57, 1, 0, 1, 876, 22172, 28367, 3592, 120, 1, 0, 1, 4139, 803583, 8274374, 991829, 19903, 247, 1
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
1;
0, 1;
0, 1, 1;
0, 1, 4, 1;
0, 1, 14, 11, 1;
0, 1, 51, 106, 26, 1;
0, 1, 202, 1232, 642, 57, 1;
0, 1, 876, 22172, 28367, 3592, 120, 1;
0, 1, 4139, 803583, 8274374, 991829, 19903, 247, 1;
...
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
Cf. Same as
A058711 (except for row n=0 and column k=0).
A002773
Number of nonisomorphic simple matroids (or geometries) with n points.
Original entry on oeis.org
1, 1, 1, 2, 4, 9, 26, 101, 950, 376467
Offset: 0
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 138.
- Knuth, Donald E. "The asymptotic number of geometries." Journal of Combinatorial Theory, Series A 16.3 (1974): 398-400.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. Bansal, R. Pendavingh, and J. G. van der Pol, On the number of matroids, arXiv:1206.6270v1 [math.CO], 2012.
- Nikhil Bansal, Rudi A. Pendavingh, and Jorn G. van der Pol, On the number of matroids, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2013; full version in Combinatorica, 35:3 (2015), 253-277.
- J. E. Blackburn, H. H. Crapo, and D. A. Higgs, A catalogue of combinatorial geometries, Math. Comp 27 (1973), 155-166.
- Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory. II. Combinatorial geometries, Studies in Appl. Math. 49 (1970), 109-133.
- Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory. II. Combinatorial geometries, Studies in Appl. Math. 49 (1970), 109-133. [Annotated scanned copy of pages 126 and 127 only]
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
- Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, arXiv:math/0702316 [math.CO], 2007.
- Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, J. Combin. Theory Ser. B 98(2) (2008), 415-431.
- M. J. Piff, An upper bound for the number of matroids, J. Combinatorial Theory Ser. B, vol 14 (1973), pp. 241-245.
- Gordon Royle and Dillon Mayhew, 9-element matroids.
- N. J. A. Sloane, Initial terms (* denotes 5 points in general position in 4-space).
- Eric Weisstein's World of Mathematics, Matroid.
- Index entries for sequences related to matroids
A058711
Triangle T(n,k) giving the number of loopless matroids of rank k on n labeled points (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 14, 11, 1, 1, 51, 106, 26, 1, 1, 202, 1232, 642, 57, 1, 1, 876, 22172, 28367, 3592, 120, 1, 1, 4139, 803583, 8274374, 991829, 19903, 247, 1
Offset: 1
Table T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
1;
1, 1;
1, 4, 1;
1, 14, 11, 1;
1, 51, 106, 26, 1;
1, 202, 1232, 642, 57, 1;
1, 876, 22172, 28367, 3592, 120, 1;
1, 4139, 803583, 8274374, 991829, 19903, 247, 1;
...
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
- Index entries for sequences related to matroids
Same as
A058710 (except for row n=0 and column k=0).
A058720
Triangle T(n,k) giving the number of simple matroids of rank k on n labeled points (n >= 2, 2 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 31, 16, 1, 1, 352, 337, 42, 1, 1, 8389, 18700, 2570, 99, 1, 1, 433038, 7642631, 907647, 16865, 219, 1
Offset: 2
Triangle T(n,k) (with rows n >= 2 and columns k >= 2) begins as follows:
1;
1, 1;
1, 5, 1;
1, 31, 16, 1;
1, 352, 337, 42, 1;
1, 8389, 18700, 2570, 99, 1;
1, 433038, 7642631, 907647, 16865, 219, 1;
...
- Mohamed Barakat, Reimer Behrends, Christopher Jefferson, Lukas Kühne, and Martin Leuner, On the generation of rank 3 simple matroids with an application to Terao's freeness conjecture, arXiv:1907.01073 [math.CO], 2019.
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g. [See p. 11.]
- Index entries for sequences related to matroids
A001548
Number of connected linear spaces with n (unlabeled) points.
Original entry on oeis.org
1, 1, 0, 1, 1, 2, 4, 13, 42, 308, 4845, 227613, 28639650
Offset: 0
a(2) = 0 because the unique linear space on two points can be partitioned into two single point subsets which disconnects the space vacuously. a(5) = 2 because there are two connected linear spaces with 5 points: one has only one line and the other has two lines with three points that intersect in one point that belongs to no other line while the other four points belong to three lines. - _Michael Somos_, Apr 24 2014
- L. M. Batten and A. Beutelspacher: The theory of finite linear spaces, Cambridge Univ. Press, 1993 (see the Appendix).
- Doyen, Jean; Sur le nombre d'espaces linéaires non isomorphes de n points. Bull. Soc. Math. Belg. 19 1967 421-437.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A031436
Number of proper linear spaces of order n.
Original entry on oeis.org
1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 3, 7, 1, 119, 398, 161925, 2412890
Offset: 0
Anton Betten (Anton.Betten(AT)uni-bayreuth.de)
- Anton Betten and Dieter Betten, The proper linear spaces on 17 points, Discrete Applied Mathematics, Volume 95, no. 1-3, 1999, pp. 83-108.
- Anton Betten and Dieter Betten, Note on the Proper Linear Spaces on 18 Points, in "Algebraic Combinatorics and Applications", Springer 2001, pp. 40-54.
- Anton Betten and Dieter Betten, Data up to 18 points, Proceedings of ALCOMA 1999, Springer Verlag 2000, 40-54 [free access].
- Hans-Dietrich O. F. Gronau, Ronald C. Mullin, Christian Pietsch, Pairwise Balanced Designs as Linear Spaces, pp. 228-235, table 4.19 [but beware errors], in: Charles J. Colbourn, Ed., CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton 1996 [PDF preview]
A058715
Number of loopless matroids of rank 3 on n labeled points.
Original entry on oeis.org
1, 11, 106, 1232, 22172, 803583, 70820187, 16122092568
Offset: 3
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
- Index entries for sequences related to matroids
Column k=3 of both
A058710 and
A058711 (which are the same except for column k=0).
Showing 1-9 of 9 results.
Comments