A056642
Number of linear spaces on n (labeled) points.
Original entry on oeis.org
1, 1, 2, 6, 32, 353, 8390, 433039, 50166354, 13480967630
Offset: 1
W. M. B. Dukes (dukes(AT)stp.dias.ie), Aug 28 2000
- L. M. Batten and A. Beutelspacher: The theory of finite linear spaces, Cambridge Univ. Press, 1993 (see the Appendix).
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 303, #42.
- J. Doyen, Sur le nombre d'espaces linéaires non isomorphes de n points, Bull. Soc. Math. Belg. 19 (1967), 421-437.
- J. A. Thas, Sur le nombre d'espaces linéaires non isomorphes de n points, Bull. Soc. Math. Belg. 21 (1969), 57-66.
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. Dukes, Bounds on the number of generalized partitions and some applications, Australas. J. Combin. 28 (2003), 257-261.
- W. M. B. Dukes, On the number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- Index entries for sequences related to matroids
A001548
Number of connected linear spaces with n (unlabeled) points.
Original entry on oeis.org
1, 1, 0, 1, 1, 2, 4, 13, 42, 308, 4845, 227613, 28639650
Offset: 0
a(2) = 0 because the unique linear space on two points can be partitioned into two single point subsets which disconnects the space vacuously. a(5) = 2 because there are two connected linear spaces with 5 points: one has only one line and the other has two lines with three points that intersect in one point that belongs to no other line while the other four points belong to three lines. - _Michael Somos_, Apr 24 2014
- L. M. Batten and A. Beutelspacher: The theory of finite linear spaces, Cambridge Univ. Press, 1993 (see the Appendix).
- Doyen, Jean; Sur le nombre d'espaces linéaires non isomorphes de n points. Bull. Soc. Math. Belg. 19 1967 421-437.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A031436
Number of proper linear spaces of order n.
Original entry on oeis.org
1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 3, 7, 1, 119, 398, 161925, 2412890
Offset: 0
Anton Betten (Anton.Betten(AT)uni-bayreuth.de)
- Anton Betten and Dieter Betten, The proper linear spaces on 17 points, Discrete Applied Mathematics, Volume 95, no. 1-3, 1999, pp. 83-108.
- Anton Betten and Dieter Betten, Note on the Proper Linear Spaces on 18 Points, in "Algebraic Combinatorics and Applications", Springer 2001, pp. 40-54.
- Anton Betten and Dieter Betten, Data up to 18 points, Proceedings of ALCOMA 1999, Springer Verlag 2000, 40-54 [free access].
- Hans-Dietrich O. F. Gronau, Ronald C. Mullin, Christian Pietsch, Pairwise Balanced Designs as Linear Spaces, pp. 228-235, table 4.19 [but beware errors], in: Charles J. Colbourn, Ed., CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton 1996 [PDF preview]
A058731
Number of nonisomorphic simple matroids of rank 3 on n unlabeled points.
Original entry on oeis.org
0, 0, 0, 1, 2, 4, 9, 23, 68, 383, 5249, 232928, 28872972
Offset: 0
- Mohamed Barakat, Reimer Behrends, Christopher Jefferson, Lukas Kühne, Martin Leuner, On the generation of rank 3 simple matroids with an application to Terao's freeness conjecture, arXiv:1907.01073 [math.CO], 2019.
- Crapo, Henry H.; Rota, Gian-Carlo; On the foundations of combinatorial theory. II. Combinatorial geometries, Studies in Appl. Math. 49 1970 109-133. [Annotated scanned copy of pages 126 and 127 only]
- W. M. B. Dukes, Tables of matroids
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- Index entries for sequences related to matroids
Equals
A001200 - 1 (see that entry for further information).
A031437
Number of nonisomorphic regular linear spaces RLIN(n).
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 4, 3, 4, 9, 14, 33, 839, 2041, 22192
Offset: 0
Anton Betten (Anton.Betten(AT)uni-bayreuth.de)
- A. Betten and D. Betten: Regular Linear Spaces, Beitraege Algebra Geometrie 38 (1): 111-124, 1997.
- A. Betten and D. Betten: The proper linear spaces on 17 points, Discrete Applied Mathematics, Volume 95, no. 1-3, 1999, pp. 83-108.
- CRC Handbook of Combinatorial Designs, in the article by Gronau, Mullin and Pietsch.
A002876
Number of weighted linear spaces of total weight n.
Original entry on oeis.org
1, 2, 4, 8, 16, 36, 85, 239
Offset: 1
- Robillard, Pierre; On the weighted finite linear spaces. Bull. Soc. Math. Belg. 22 (1970), 227-241.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A002877
Number of connected weighted linear spaces of total weight n.
Original entry on oeis.org
1, 1, 2, 3, 6, 13, 35, 116
Offset: 1
- Robillard, Pierre; On the weighted finite linear spaces. Bull. Soc. Math. Belg. 22 (1970), 227-241.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A031438
Number of nonisomorphic proper regular linear spaces, PRLIN(n).
Original entry on oeis.org
1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 3, 3, 0, 84, 25, 0
Offset: 0
Anton Betten (Anton.Betten(AT)uni-bayreuth.de)
- A. Betten and D. Betten: The proper linear spaces on 17 points, Discrete Applied Mathematics, Volume 95, no. 1-3, 1999, pp. 83-108.
A309114
Minimal linear spaces on n points.
Original entry on oeis.org
1, 0, 1, 3, 8, 23, 208
Offset: 3
- Batten, Lynn Margaret, and Beutelspacher, Albrecht. The Theory of Finite Linear Spaces: Combinatorics of Points and Lines, Cambridge University Press, 1993.
- Robert Haas, Cographs, arXiv:1905.12627 [math.GM], 2019, p. 46.
A309115
Minimal linear spaces with n nontrivial lines.
Original entry on oeis.org
- Batten, Lynn Margaret, and Beutelspacher, Albrecht. The Theory of Finite Linear Spaces: Combinatorics of Points and Lines, Cambridge University Press, 1993.
- Robert Haas, Cographs, arXiv:1905.12627 [math.GM], 2019, p. 46.
Showing 1-10 of 11 results.
Comments