cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A058692 a(n) = B(n) - 1, where B(n) = Bell numbers, A000110.

Original entry on oeis.org

1, 4, 14, 51, 202, 876, 4139, 21146, 115974, 678569, 4213596, 27644436, 190899321, 1382958544, 10480142146, 82864869803, 682076806158, 5832742205056, 51724158235371, 474869816156750, 4506715738447322, 44152005855084345
Offset: 2

Views

Author

N. J. A. Sloane, Dec 30 2000

Keywords

Examples

			G.f. = x^2 + 4*x^3 + 14*x^4 + 51*x^5 + 202*x^6 + 876*x^7 + 4139*x^8 + ...
		

Crossrefs

Column k=2 of both A058710 and A058711 (which are the same except for column k=0).
Cf. A000110.

Programs

Formula

G.f.: Sum_{k > 1} x^k / ((1 - x) * (1 - x^2) * ... * (1 - x^k)). - Michael Somos, Feb 26 2014
E.g.f.: exp(exp(x) - 1) - exp(x). - Ilya Gutkovskiy, Feb 08 2020

A058711 Triangle T(n,k) giving the number of loopless matroids of rank k on n labeled points (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 14, 11, 1, 1, 51, 106, 26, 1, 1, 202, 1232, 642, 57, 1, 1, 876, 22172, 28367, 3592, 120, 1, 1, 4139, 803583, 8274374, 991829, 19903, 247, 1
Offset: 1

Views

Author

N. J. A. Sloane, Dec 31 2000

Keywords

Comments

From Petros Hadjicostas, Oct 09 2019: (Start)
The old references had some typos, some of which were corrected in the recent ones. Few additional typos were corrected here from the recent references. Here are some of the changes: T(5,2) = 31 --> 51; T(5,4) = 21 --> 26; sum of row n=5 is 185 (not 160 or 165); T(8,3) = 686515 --> 803583; T(8, 6) = 19904 --> 19903, and some others.
This triangular array is the same as A058710 except that it has no row n = 0 and no column k = 0.
(End)

Examples

			Table T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
  1;
  1,    1;
  1,    4,      1;
  1,   14,     11,       1;
  1,   51,    106,      26,      1;
  1,  202,   1232,     642,     57,     1;
  1,  876,  22172,   28367,   3592,   120,   1;
  1, 4139, 803583, 8274374, 991829, 19903, 247, 1;
  ...
		

Crossrefs

Same as A058710 (except for row n=0 and column k=0).
Row sums give A058712.
Columns include (truncated versions of) A000012 (k=1), A058692 (k=2), A058715 (k=3).

Formula

From Petros Hadjicostas, Oct 09 2019: (Start)
T(n,1) = 1 for n >= 1.
T(n,2) = Bell(n) - 1 = A000110(n) - 1 = A058692(n) for n >= 2.
T(n,3) = Sum_{i = 3..n} Stirling2(n,i) * (A056642(i) - 1) = Sum_{i = 3..n} A008277(n,i) * A058720(i,3) for n >= 3.
T(n,k) = Sum_{i = k..n} Stirling2(n,i) * A058720(i,k) for n >= k. [Dukes (2004), p. 3; see the equation with the Stirling numbers of the second kind.]
(End)

Extensions

Several values corrected by Petros Hadjicostas, Oct 09 2019

A058720 Triangle T(n,k) giving the number of simple matroids of rank k on n labeled points (n >= 2, 2 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 31, 16, 1, 1, 352, 337, 42, 1, 1, 8389, 18700, 2570, 99, 1, 1, 433038, 7642631, 907647, 16865, 219, 1
Offset: 2

Views

Author

N. J. A. Sloane, Dec 31 2000

Keywords

Examples

			Triangle T(n,k) (with rows n >= 2 and columns k >= 2) begins as follows:
  1;
  1,      1;
  1,      5,       1;
  1,     31,      16,      1;
  1,    352,     337,     42,     1;
  1,   8389,   18700,   2570,    99,   1;
  1, 433038, 7642631, 907647, 16865, 219, 1;
  ...
		

Crossrefs

Row sums give A058721.
Columns include (truncated versions of) A000012 (k=2), (A056642)+1 (k=3), A058722 (k=4).

Formula

From Petros Hadjicostas, Oct 09 2019: (Start)
T(n, n-1) = 2^n - 1 - binomial(n+1,2) = A002662(n) for n >= 2. [Dukes (2004), Lemma 2.2(i).]
T(n, n-2) = A100728(n) = A000110(n+1) + binomial(n+3,4) + 2*binomial(n+1,4) - 2^n - 2^(n-1)*binomial(n+1,2). [Dukes (2004), Lemma 2.2(iii).]
(End)

A058669 Triangle T(n,k) read by rows, giving number of matroids of rank k on n labeled points (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 36, 15, 1, 1, 31, 171, 171, 31, 1, 1, 63, 813, 2053, 813, 63, 1, 1, 127, 4012, 33442, 33442, 4012, 127, 1, 1, 255, 20891, 1022217, 8520812, 1022217, 20891, 255, 1, 1, 511
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2000

Keywords

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
  1;
  1,   1;
  1,   3,     1;
  1,   7,     7,       1;
  1,  15,    36,      15,       1;
  1,  31,   171,     171,      31,       1;
  1,  63,   813,    2053,     813,      63,     1;
  1, 127,  4012,   33442,   33442,    4012,   127,   1;
  1, 255, 20891, 1022217, 8520812, 1022217, 20891, 255, 1;
  ...
		

Crossrefs

Row sums give A058673.
Columns include (truncated versions of) A000012 (k=0), A000225 (k=1), A058681 (k=2), A058687 (k=3).

Formula

From Petros Hadjicostas, Oct 10 2019: (Start)
T(n,0) = 1 for n >= 0.
T(n,1) = 2^n - 1 for n >= 1. [Dukes (2004), Theorem 2.1 (ii).]
T(n,2) = Bell(n+1) - 2^n = A000110(n+1) - A000079(n) for n >= 2. [Dukes (2004), Theorem 2.1 (ii).]
T(n,k) = Sum_{m = k..n} binomial(n,m) * A058711(m,k) for n >= k. [Dukes (2004), see the equations before Theorem 2.1.]
(End)

A058716 Triangle T(n,k) giving number of nonisomorphic loopless matroids of rank k on n labeled points (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 6, 9, 4, 1, 0, 1, 10, 25, 18, 5, 1, 0, 1, 14, 70, 85, 31, 6, 1, 0, 1, 21, 217, 832, 288, 51, 7, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 31 2000

Keywords

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
  1;
  0, 1;
  0, 1,  1;
  0, 1,  2,   1;
  0, 1,  4,   3,   1;
  0, 1,  6,   9,   4,   1;
  0, 1, 10,  25,  18,   5,  1;
  0, 1, 14,  70,  85,  31,  6, 1;
  0, 1, 21, 217, 832, 288, 51, 7, 1;
  ...
		

Crossrefs

Cf. A058717 (same except for border), A058710, A058711. Row sums give A058718. Diagonals give A000065, A058719.

Extensions

Corrected and extended by Jean-François Alcover, Oct 21 2013
Reverted to original data by Sean A. Irvine, Aug 16 2022

A058712 Number of loopless matroids on n labeled points.

Original entry on oeis.org

1, 1, 2, 6, 27, 185, 2135, 55129, 10094077
Offset: 0

Views

Author

N. J. A. Sloane, Dec 31 2000

Keywords

Crossrefs

Row sums of A058710.

Extensions

a(5) corrected by Petros Hadjicostas, Oct 09 2019

A058715 Number of loopless matroids of rank 3 on n labeled points.

Original entry on oeis.org

1, 11, 106, 1232, 22172, 803583, 70820187, 16122092568
Offset: 3

Views

Author

N. J. A. Sloane, Dec 31 2000

Keywords

Comments

The sequence was updated based on more recent references by W. M. B. Dukes. The calculation of a(9) and a(10) depends on the values of A056642 for n = 9 and n = 10. Note that (A056642) - 1 is column k = 3 of A058720. - Petros Hadjicostas, Oct 09 2019

Crossrefs

Column k=3 of both A058710 and A058711 (which are the same except for column k=0).

Formula

a(n) = Sum_{i = 3..n} Stirling2(n,i) * (A056642(i) - 1) = Sum_{i = 3..n} A008277(n,i) * A058720(n,3) for n >= 3. [Dukes (2004), p. 3; see the equation with the Stirling numbers of the second kind.] - Petros Hadjicostas, Oct 10 2019

Extensions

a(8) corrected by and more terms from Petros Hadjicostas, Oct 09 2019

A058717 Triangle T(n,k) giving number of nonisomorphic loopless matroids of rank k on n labeled points (n >= 1, 1<=k<=n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 9, 4, 1, 1, 10, 25, 18, 5, 1, 1, 14, 70, 85, 31, 6, 1, 1, 21, 217, 832, 288, 51, 7, 1
Offset: 1

Views

Author

N. J. A. Sloane, Dec 31 2000

Keywords

Examples

			1;
1,  1;
1,  2,   1;
1,  4,   3,   1;
1,  6,   9,   4,   1;
1, 10,  25,  18,   5,  1;
1, 14,  70,  85,  31,  6, 1;
1, 21, 217, 832, 288, 51, 7, 1;
...
		

Crossrefs

Cf. A058716 (same except for border), A058710, A058711.
Row sums give A058718. Diagonals give A000065, A058719.

Extensions

Corrected and extended by Jean-François Alcover, Oct 21 2013
Reverted to original data by Jean-François Alcover, Aug 17 2022
Showing 1-8 of 8 results.