cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000065 -1 + number of partitions of n.

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 10, 14, 21, 29, 41, 55, 76, 100, 134, 175, 230, 296, 384, 489, 626, 791, 1001, 1254, 1574, 1957, 2435, 3009, 3717, 4564, 5603, 6841, 8348, 10142, 12309, 14882, 17976, 21636, 26014, 31184, 37337, 44582, 53173, 63260, 75174, 89133, 105557, 124753
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the number of noncongruent n-dimensional integer-sided simplices with diameter n. - Sascha Kurz, Jul 26 2004
Also, the number of partitions of n into parts each less than n.
Also, the number of distinct types of equation which can be derived from the equation [n,0,0] not including itself. (Ince)
Also, the number of rooted trees on n+1 nodes with height exactly 2.
Also, the number of partitions (of any positive integer) whose sum + length is <= n. Example: a(5) = 6 counts 4, 3, 21, 2, 11, 1. Proof: Given a partition of n other than the all 1s partition, subtract 1 from each part and then drop the zeros. This is a bijection to the partitions with sum + length <= n. - David Callan, Nov 29 2007
Number of graphs with n vertices of treewidth n-2. Reason: The complement of a graph with n vertices and treewidth >= n-2 cannot have P3 or K3 as a subgraph (Chlebı́ková 2002, Theorem 10), so every component of it is a star. - Martín Muñoz, Dec 31 2023

Examples

			G.f. = x^2 + 2*x^3 + 4*x^4 + 6*x^5 + 10*x^6 + 14*x^7 + 21*x^8 + 29*x^9 + ...
		

References

  • E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944, p. 498; MR0010757.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A000041 - 1. A column of A058716. A diagonal of A263294.
Column h=2 of A034781.

Programs

  • Magma
    [NumberOfPartitions(n)-1: n in [0..50]]; // Vincenzo Librandi, Aug 25 2013
  • Maple
    with (combstruct):ZL:=proc(m) local i; [T0,{seq(T.i=Prod(Z,Set(T.(i+1))),i=0..m-1), T.m=Z}, unlabeled] end:A:=n -> count(ZL(2),size=n)-count(ZL(1),size=n): seq(A(n),n=1..46); # Zerinvary Lajos, Dec 05 2007
    ZL :=[S, {S = Set(Cycle(Z),1 < card)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=0..45); # Zerinvary Lajos, Mar 25 2008
  • Mathematica
    nn=40;CoefficientList[Series[Product[1/(1-x^i),{i,1,nn}]-1/(1-x),{x,0,nn}],x]  (* Geoffrey Critzer, Oct 28 2012 *)
    PartitionsP[Range[0,50]]-1 (* Harvey P. Dale, Aug 24 2013 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / eta(x + x*O(x^n)), n) - 1)};
    
  • PARI
    {a(n) = if( n<0, 0, numbpart(n) - 1)};
    

Formula

a(n) = A026820(n,n-1) for n>1. - Reinhard Zumkeller, Jan 21 2010
G.f.: x*G(0)/(x-1) where G(k) = 1 - 1/(1-x^(k+1))/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 23 2013
G.f.: Sum_{k>=2} x^k / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Sep 07 2021

A058720 Triangle T(n,k) giving the number of simple matroids of rank k on n labeled points (n >= 2, 2 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 31, 16, 1, 1, 352, 337, 42, 1, 1, 8389, 18700, 2570, 99, 1, 1, 433038, 7642631, 907647, 16865, 219, 1
Offset: 2

Views

Author

N. J. A. Sloane, Dec 31 2000

Keywords

Examples

			Triangle T(n,k) (with rows n >= 2 and columns k >= 2) begins as follows:
  1;
  1,      1;
  1,      5,       1;
  1,     31,      16,      1;
  1,    352,     337,     42,     1;
  1,   8389,   18700,   2570,    99,   1;
  1, 433038, 7642631, 907647, 16865, 219, 1;
  ...
		

Crossrefs

Row sums give A058721.
Columns include (truncated versions of) A000012 (k=2), (A056642)+1 (k=3), A058722 (k=4).

Formula

From Petros Hadjicostas, Oct 09 2019: (Start)
T(n, n-1) = 2^n - 1 - binomial(n+1,2) = A002662(n) for n >= 2. [Dukes (2004), Lemma 2.2(i).]
T(n, n-2) = A100728(n) = A000110(n+1) + binomial(n+3,4) + 2*binomial(n+1,4) - 2^n - 2^(n-1)*binomial(n+1,2). [Dukes (2004), Lemma 2.2(iii).]
(End)

A058718 Number of nonisomorphic loopless matroids on n unlabeled points.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 60, 208, 1418, 381448
Offset: 0

Views

Author

N. J. A. Sloane, Dec 31 2000

Keywords

Crossrefs

Row sums of A058716.

Extensions

a(9) from Gordon Royle, Dec 23 2006

A058719 Number of nonisomorphic loopless matroids of rank 3 on n labeled points.

Original entry on oeis.org

1, 3, 9, 25, 70, 217, 950, 8762, 288454
Offset: 3

Views

Author

N. J. A. Sloane, Dec 31 2000

Keywords

References

  • A. Evnin, An Elementary Introduction to Matroids, Mathematical Education, 2(33), 2005, 2-33.

Crossrefs

A diagonal of A058716.

Extensions

a(9)-a(11) Alexander Evnin, Dec 26 2008

A058717 Triangle T(n,k) giving number of nonisomorphic loopless matroids of rank k on n labeled points (n >= 1, 1<=k<=n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 9, 4, 1, 1, 10, 25, 18, 5, 1, 1, 14, 70, 85, 31, 6, 1, 1, 21, 217, 832, 288, 51, 7, 1
Offset: 1

Views

Author

N. J. A. Sloane, Dec 31 2000

Keywords

Examples

			1;
1,  1;
1,  2,   1;
1,  4,   3,   1;
1,  6,   9,   4,   1;
1, 10,  25,  18,   5,  1;
1, 14,  70,  85,  31,  6, 1;
1, 21, 217, 832, 288, 51, 7, 1;
...
		

Crossrefs

Cf. A058716 (same except for border), A058710, A058711.
Row sums give A058718. Diagonals give A000065, A058719.

Extensions

Corrected and extended by Jean-François Alcover, Oct 21 2013
Reverted to original data by Jean-François Alcover, Aug 17 2022
Showing 1-5 of 5 results.