A058710
Triangle T(n,k) giving number of loopless matroids of rank k on n labeled points (n >= 0, 0 <= k <= n).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 14, 11, 1, 0, 1, 51, 106, 26, 1, 0, 1, 202, 1232, 642, 57, 1, 0, 1, 876, 22172, 28367, 3592, 120, 1, 0, 1, 4139, 803583, 8274374, 991829, 19903, 247, 1
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
1;
0, 1;
0, 1, 1;
0, 1, 4, 1;
0, 1, 14, 11, 1;
0, 1, 51, 106, 26, 1;
0, 1, 202, 1232, 642, 57, 1;
0, 1, 876, 22172, 28367, 3592, 120, 1;
0, 1, 4139, 803583, 8274374, 991829, 19903, 247, 1;
...
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
Cf. Same as
A058711 (except for row n=0 and column k=0).
A058711
Triangle T(n,k) giving the number of loopless matroids of rank k on n labeled points (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 14, 11, 1, 1, 51, 106, 26, 1, 1, 202, 1232, 642, 57, 1, 1, 876, 22172, 28367, 3592, 120, 1, 1, 4139, 803583, 8274374, 991829, 19903, 247, 1
Offset: 1
Table T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
1;
1, 1;
1, 4, 1;
1, 14, 11, 1;
1, 51, 106, 26, 1;
1, 202, 1232, 642, 57, 1;
1, 876, 22172, 28367, 3592, 120, 1;
1, 4139, 803583, 8274374, 991829, 19903, 247, 1;
...
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
- Index entries for sequences related to matroids
Same as
A058710 (except for row n=0 and column k=0).
A058730
Triangle T(n,k) giving number of nonisomorphic simple matroids of rank k on n labeled points (n >= 2, 2 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 11, 4, 1, 1, 23, 49, 22, 5, 1, 1, 68, 617, 217, 40, 6, 1, 1, 383, 185981, 188936, 1092, 66, 7, 1, 1, 5249, 4884573865
Offset: 2
Triangle T(n,k) (with rows n >= 2 and columns k >= 2) begins as follows:
1;
1, 1;
1, 2, 1;
1, 4, 3, 1;
1, 9, 11, 4, 1;
1, 23, 49, 22, 5, 1;
1, 68, 617, 217, 40, 6, 1;
1, 383, 185981, 188936, 1092, 66, 7, 1;
...
From _Petros Hadjicostas_, Oct 09 2019: (Start)
Matsumoto et al. (2012, p. 36) gave an incomplete row n = 10 (starting at k = 2):
1, 5249, 4884573865, *, 4886374072, 9742, 104, 8, 1;
They also gave incomplete rows for n = 11 and n = 12.
(End)
- Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory. II. Combinatorial geometries, Studies in Appl. Math. 49 (1970), 109-133. [Annotated scanned copy of pages 126 and 127 only]
- Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory. II. Combinatorial geometries, Studies in Appl. Math. 49 (1970), 109-133.
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
- Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, arXiv:math/0702316 [math.CO], 2007. [See Table 2, p. 9.]
- Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, J. Combin. Theory Ser. B 98(2) (2008), 415-431. [See Table 2, p. 420.]
- Y. Matsumoto, S. Moriyama, H. Imai, and D. Bremmer, Matroid enumeration for incidence geometry, Discrete Comput. Geom. 47 (2012), 17-43.
- Gordon Royle and Dillon Mayhew, 9-element matroids.
- Index entries for sequences related to matroids
A058715
Number of loopless matroids of rank 3 on n labeled points.
Original entry on oeis.org
1, 11, 106, 1232, 22172, 803583, 70820187, 16122092568
Offset: 3
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
- Index entries for sequences related to matroids
Column k=3 of both
A058710 and
A058711 (which are the same except for column k=0).
A058721
Number of simple matroids on n labeled points.
Original entry on oeis.org
1, 2, 7, 49, 733, 29760, 9000402
Offset: 2
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
- Index entries for sequences related to matroids
A058722
Number of simple matroids of rank 4 on n labeled points.
Original entry on oeis.org
1, 16, 337, 18700, 7642631
Offset: 4
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
- Index entries for sequences related to matroids
A100728
Number of rank-(n-2) simple matroids on S_n.
Original entry on oeis.org
1, 31, 337, 2570, 16865, 104858, 650761, 4145956, 27483392, 190522216, 1382087111, 10478149999, 82860356456, 682066659044, 5832719543338, 51724107920729, 474869705028520, 4506715494154371, 44152005320340946
Offset: 4
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004. [See Lemma 2.2(iii).]
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g. [See Lemma 2.2(iii).]
Showing 1-7 of 7 results.
Comments