A058692
a(n) = B(n) - 1, where B(n) = Bell numbers, A000110.
Original entry on oeis.org
1, 4, 14, 51, 202, 876, 4139, 21146, 115974, 678569, 4213596, 27644436, 190899321, 1382958544, 10480142146, 82864869803, 682076806158, 5832742205056, 51724158235371, 474869816156750, 4506715738447322, 44152005855084345
Offset: 2
G.f. = x^2 + 4*x^3 + 14*x^4 + 51*x^5 + 202*x^6 + 876*x^7 + 4139*x^8 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 2..200
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, On the number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- Index entries for sequences related to matroids
Column k=2 of both
A058710 and
A058711 (which are the same except for column k=0).
A058710
Triangle T(n,k) giving number of loopless matroids of rank k on n labeled points (n >= 0, 0 <= k <= n).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 14, 11, 1, 0, 1, 51, 106, 26, 1, 0, 1, 202, 1232, 642, 57, 1, 0, 1, 876, 22172, 28367, 3592, 120, 1, 0, 1, 4139, 803583, 8274374, 991829, 19903, 247, 1
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
1;
0, 1;
0, 1, 1;
0, 1, 4, 1;
0, 1, 14, 11, 1;
0, 1, 51, 106, 26, 1;
0, 1, 202, 1232, 642, 57, 1;
0, 1, 876, 22172, 28367, 3592, 120, 1;
0, 1, 4139, 803583, 8274374, 991829, 19903, 247, 1;
...
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
Cf. Same as
A058711 (except for row n=0 and column k=0).
A058720
Triangle T(n,k) giving the number of simple matroids of rank k on n labeled points (n >= 2, 2 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 31, 16, 1, 1, 352, 337, 42, 1, 1, 8389, 18700, 2570, 99, 1, 1, 433038, 7642631, 907647, 16865, 219, 1
Offset: 2
Triangle T(n,k) (with rows n >= 2 and columns k >= 2) begins as follows:
1;
1, 1;
1, 5, 1;
1, 31, 16, 1;
1, 352, 337, 42, 1;
1, 8389, 18700, 2570, 99, 1;
1, 433038, 7642631, 907647, 16865, 219, 1;
...
- Mohamed Barakat, Reimer Behrends, Christopher Jefferson, Lukas Kühne, and Martin Leuner, On the generation of rank 3 simple matroids with an application to Terao's freeness conjecture, arXiv:1907.01073 [math.CO], 2019.
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g. [See p. 11.]
- Index entries for sequences related to matroids
A058669
Triangle T(n,k) read by rows, giving number of matroids of rank k on n labeled points (n >= 0, 0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 36, 15, 1, 1, 31, 171, 171, 31, 1, 1, 63, 813, 2053, 813, 63, 1, 1, 127, 4012, 33442, 33442, 4012, 127, 1, 1, 255, 20891, 1022217, 8520812, 1022217, 20891, 255, 1, 1, 511
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 15, 36, 15, 1;
1, 31, 171, 171, 31, 1;
1, 63, 813, 2053, 813, 63, 1;
1, 127, 4012, 33442, 33442, 4012, 127, 1;
1, 255, 20891, 1022217, 8520812, 1022217, 20891, 255, 1;
...
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
- Index entries for sequences related to matroids
A058716
Triangle T(n,k) giving number of nonisomorphic loopless matroids of rank k on n labeled points (n >= 0, 0 <= k <= n).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 6, 9, 4, 1, 0, 1, 10, 25, 18, 5, 1, 0, 1, 14, 70, 85, 31, 6, 1, 0, 1, 21, 217, 832, 288, 51, 7, 1
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
1;
0, 1;
0, 1, 1;
0, 1, 2, 1;
0, 1, 4, 3, 1;
0, 1, 6, 9, 4, 1;
0, 1, 10, 25, 18, 5, 1;
0, 1, 14, 70, 85, 31, 6, 1;
0, 1, 21, 217, 832, 288, 51, 7, 1;
...
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
- Index entries for sequences related to matroids
A058715
Number of loopless matroids of rank 3 on n labeled points.
Original entry on oeis.org
1, 11, 106, 1232, 22172, 803583, 70820187, 16122092568
Offset: 3
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
- Index entries for sequences related to matroids
Column k=3 of both
A058710 and
A058711 (which are the same except for column k=0).
A058717
Triangle T(n,k) giving number of nonisomorphic loopless matroids of rank k on n labeled points (n >= 1, 1<=k<=n).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 9, 4, 1, 1, 10, 25, 18, 5, 1, 1, 14, 70, 85, 31, 6, 1, 1, 21, 217, 832, 288, 51, 7, 1
Offset: 1
1;
1, 1;
1, 2, 1;
1, 4, 3, 1;
1, 6, 9, 4, 1;
1, 10, 25, 18, 5, 1;
1, 14, 70, 85, 31, 6, 1;
1, 21, 217, 832, 288, 51, 7, 1;
...
Showing 1-7 of 7 results.
Comments