cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002773 Number of nonisomorphic simple matroids (or geometries) with n points.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 26, 101, 950, 376467
Offset: 0

Views

Author

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 138.
  • Knuth, Donald E. "The asymptotic number of geometries." Journal of Combinatorial Theory, Series A 16.3 (1974): 398-400.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A055545, A056642. Row sums of A058730.

Formula

Limit_{ n -> oo } (log_2 log_2 a(n))/n = 1. [Knuth]
2^n/n^(3/2) << log a(n) << 2^n/n, proved by Knuth and Piff respectively. - Charles R Greathouse IV, Mar 20 2021
Bansal, Pendavingh, & van der Pol prove an upper bound almost matching the lower bound above: log a(n) <= 2*sqrt(2/Pi)*2^n/n^(3/2)*(1 + o(1)). - Charles R Greathouse IV, Mar 20 2021

Extensions

a(9) from Gordon Royle, Dec 23 2006

A058720 Triangle T(n,k) giving the number of simple matroids of rank k on n labeled points (n >= 2, 2 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 31, 16, 1, 1, 352, 337, 42, 1, 1, 8389, 18700, 2570, 99, 1, 1, 433038, 7642631, 907647, 16865, 219, 1
Offset: 2

Views

Author

N. J. A. Sloane, Dec 31 2000

Keywords

Examples

			Triangle T(n,k) (with rows n >= 2 and columns k >= 2) begins as follows:
  1;
  1,      1;
  1,      5,       1;
  1,     31,      16,      1;
  1,    352,     337,     42,     1;
  1,   8389,   18700,   2570,    99,   1;
  1, 433038, 7642631, 907647, 16865, 219, 1;
  ...
		

Crossrefs

Row sums give A058721.
Columns include (truncated versions of) A000012 (k=2), (A056642)+1 (k=3), A058722 (k=4).

Formula

From Petros Hadjicostas, Oct 09 2019: (Start)
T(n, n-1) = 2^n - 1 - binomial(n+1,2) = A002662(n) for n >= 2. [Dukes (2004), Lemma 2.2(i).]
T(n, n-2) = A100728(n) = A000110(n+1) + binomial(n+3,4) + 2*binomial(n+1,4) - 2^n - 2^(n-1)*binomial(n+1,2). [Dukes (2004), Lemma 2.2(iii).]
(End)

A058731 Number of nonisomorphic simple matroids of rank 3 on n unlabeled points.

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 9, 23, 68, 383, 5249, 232928, 28872972
Offset: 0

Views

Author

N. J. A. Sloane, Dec 31 2000; May 28 2006

Keywords

Crossrefs

Equals A001200 - 1 (see that entry for further information).
A diagonal of A058730.

Extensions

Definition corrected by Gordon Royle, Feb 13 2007

A058733 Number of nonisomorphic simple matroids of rank 4 on n labeled points.

Original entry on oeis.org

1, 3, 11, 49, 617, 185981
Offset: 4

Views

Author

N. J. A. Sloane, Dec 31 2000

Keywords

Crossrefs

Column k=4 of A058730.

Extensions

a(9) from Petros Hadjicostas, Oct 09 2019 using the papers by Mayhew and Royle
Showing 1-4 of 4 results.