A058730 Triangle T(n,k) giving number of nonisomorphic simple matroids of rank k on n labeled points (n >= 2, 2 <= k <= n).
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 11, 4, 1, 1, 23, 49, 22, 5, 1, 1, 68, 617, 217, 40, 6, 1, 1, 383, 185981, 188936, 1092, 66, 7, 1, 1, 5249, 4884573865
Offset: 2
Examples
Triangle T(n,k) (with rows n >= 2 and columns k >= 2) begins as follows: 1; 1, 1; 1, 2, 1; 1, 4, 3, 1; 1, 9, 11, 4, 1; 1, 23, 49, 22, 5, 1; 1, 68, 617, 217, 40, 6, 1; 1, 383, 185981, 188936, 1092, 66, 7, 1; ... From _Petros Hadjicostas_, Oct 09 2019: (Start) Matsumoto et al. (2012, p. 36) gave an incomplete row n = 10 (starting at k = 2): 1, 5249, 4884573865, *, 4886374072, 9742, 104, 8, 1; They also gave incomplete rows for n = 11 and n = 12. (End)
Links
- Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory. II. Combinatorial geometries, Studies in Appl. Math. 49 (1970), 109-133. [Annotated scanned copy of pages 126 and 127 only]
- Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory. II. Combinatorial geometries, Studies in Appl. Math. 49 (1970), 109-133.
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
- Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, arXiv:math/0702316 [math.CO], 2007. [See Table 2, p. 9.]
- Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, J. Combin. Theory Ser. B 98(2) (2008), 415-431. [See Table 2, p. 420.]
- Y. Matsumoto, S. Moriyama, H. Imai, and D. Bremmer, Matroid enumeration for incidence geometry, Discrete Comput. Geom. 47 (2012), 17-43.
- Gordon Royle and Dillon Mayhew, 9-element matroids.
- Index entries for sequences related to matroids
Crossrefs
Formula
From Petros Hadjicostas, Oct 09 2019: (Start)
T(n, n-1) = n-2 for n >= 2. [Dukes (2004), Lemma 2.2(ii).]
T(n, n-2) = 6 - 4*n + Sum_{k = 1..n} A000041(k) for n >= 3. [Dukes (2004), Lemma 2.2(iv).]
(End)
Extensions
Row n=9 from Petros Hadjicostas, Oct 09 2019 using the papers by Mayhew and Royle
Comments