A058710 Triangle T(n,k) giving number of loopless matroids of rank k on n labeled points (n >= 0, 0 <= k <= n).
1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 14, 11, 1, 0, 1, 51, 106, 26, 1, 0, 1, 202, 1232, 642, 57, 1, 0, 1, 876, 22172, 28367, 3592, 120, 1, 0, 1, 4139, 803583, 8274374, 991829, 19903, 247, 1
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows: 1; 0, 1; 0, 1, 1; 0, 1, 4, 1; 0, 1, 14, 11, 1; 0, 1, 51, 106, 26, 1; 0, 1, 202, 1232, 642, 57, 1; 0, 1, 876, 22172, 28367, 3592, 120, 1; 0, 1, 4139, 803583, 8274374, 991829, 19903, 247, 1; ...
Links
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
Crossrefs
Formula
From Petros Hadjicostas, Oct 10 2019: (Start)
T(n,0) = 0^n for n >= 0.
T(n,1) = 1 for n >= 1.
T(n,3) = Sum_{i = 3..n} Stirling2(n,i) * (A056642(i) - 1) = Sum_{i = 3..n} A008277(n,i) * A058720(i,3) for n >= 3.
T(n,k) = Sum_{i = k..n} Stirling2(n,i) * A058720(i,k) for n >= k. [Dukes (2004), p. 3; see the equation with the Stirling numbers of the second kind.]
(End)
Extensions
T(5,2) corrected from 31 to 51 by Ralf Stephan, Nov 29 2004
Comments