cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058807 a(n) = Product_{k=1..n} s(n,k), where s(n,k) is unsigned Stirling number of the first kind. (s(n,k) = number of permutations of n elements which contain exactly k cycles.)

Original entry on oeis.org

1, 1, 6, 396, 420000, 9432450000, 5571367220160000, 103458225408290423193600, 70288262635020872178876253470720, 1993179010286886206697449779415040000000000, 2650683735711909138223088071500675703191552000000000000
Offset: 1

Views

Author

Leroy Quet, Jan 02 2001

Keywords

Examples

			a(4) = s(4,1)*s(4,2)*s(4,3)*s(4,4) = 6*11*6*1 = 396.
		

Crossrefs

Programs

  • Maple
    a:=n->mul(abs(Stirling1(n, k)), k=1..n): seq(a(n), n=1..10); # Zerinvary Lajos, Jun 28 2007
  • Mathematica
    Abs[Table[Product[StirlingS1[n,k],{k,n}],{n,10}]] (* Harvey P. Dale, Oct 18 2014 *)

Formula

log(a(n)) ~ n^2 * (log(n) + Pi^2/6 - 3/2) / 2. - Vaclav Kotesovec, Feb 27 2021

Extensions

a(11) from Harvey P. Dale, Oct 18 2014