cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058818 a(0) = 1, a(1) = 3; for n >= 2 a(n) is the number of degree-n monic reducible polynomials over GF(3), i.e., a(n) = 3^n - A027376(n).

Original entry on oeis.org

1, 3, 6, 19, 63, 195, 613, 1875, 5751, 17499, 53169, 161043, 487221, 1471683, 4441485, 13392331, 40356711, 121543683, 365898261, 1101089811, 3312448137, 9962241251, 29954655861, 90049997139, 270661661541, 813397065075, 2444101819329, 7343167949235
Offset: 0

Views

Author

Claude Lenormand (claude.lenormand(AT)free.fr), Jan 04 2001

Keywords

Comments

Dimensions of homogeneous subspaces of shuffle algebra over 3-letter alphabet (see A058766 for 2-letter case).

References

  • M. Lothaire, Combinatorics on words, Cambridge mathematical library, 1983, p. 126 (definition of shuffle algebra).

Crossrefs

Programs

  • Mathematica
    a[n_] := 3^n - DivisorSum[n, MoebiusMu[n/#] * 3^# &] / n; a[0] = 1; a[1] = 3; Array[a, 28, 0] (* Amiram Eldar, Aug 13 2023 *)
  • PARI
    a(n) = if (n<=1, 3^n, 3^n - sumdiv(n, d, moebius(d)*3^(n/d))/n); \\ Michel Marcus, Oct 30 2017

Extensions

Better description from Sharon Sela (sharonsela(AT)hotmail.com), Feb 19 2002
a(16)-a(27) from Alois P. Heinz, Nov 25 2016