A058841 From Renyi's "beta expansion of 1 in base 3/2": sequence gives lengths of runs of 0's in A058840.
0, 1, 5, 2, 2, 1, 9, 6, 4, 6, 2, 2, 1, 11, 3, 2, 7, 2, 5, 4, 6, 3, 3, 5, 2, 4, 7, 7, 2, 5, 3, 4, 2, 3, 5, 5, 2, 2, 2, 2, 4, 3, 10, 5, 5, 2, 1, 6, 1, 5, 2, 3, 2, 3, 3, 2, 9, 6, 9, 6, 8, 2, 7, 5, 3, 2, 2, 4, 3, 1, 14, 9, 3, 6, 7, 3, 2, 2, 3, 4, 3, 2, 6, 4, 2
Offset: 0
References
- A. Renyi (1957), Representation for real numbers and their ergodic properties, Acta. Math. Acad. Sci. Hung., 8, 477-493.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
Programs
-
Haskell
import Data.List (group) a058841 n = a058841_list !! n a058841_list = 0 : (map length $ filter ((== 0) . head) $ group a058840_list) -- Reinhard Zumkeller, Jul 01 2011
-
Mathematica
nmax = 500; r = 3/2; x = 1; (* b = A058840 *) b[0] = b[1] = 1; For[n=2, n <= nmax, n++, x = If[r x > 1, r x - 1, r x]; b[n] = Floor[r x]]; Join[{0}, Length /@ Select[Split[Table[b[n], {n, 0, nmax}]], #[[1]] == 0&]] (* Jean-François Alcover, Dec 21 2018, using Benoit Cloitre's code for A058840 *)
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Feb 22 2001
Data corrected for n>33 by Reinhard Zumkeller, Jul 01 2011