A058853 Primes p such that x^43 = 2 has a solution mod p.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
Offset: 1
Links
Programs
-
Magma
[p: p in PrimesUpTo(400) | exists(t){x : x in ResidueClassRing(p) | x^43 eq 2}]; // Vincenzo Librandi Sep 14 2012
-
Mathematica
ok[p_]:= Reduce[Mod[x^43 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[1000]], ok] (* Vincenzo Librandi Sep 14 2012 *)
-
PARI
isA058853(p) = isprime(p) && ispower(Mod(2,p), 43) \\ Jianing Song, Mar 07 2021
Extensions
The old formula "a(n) ~ 42/41 * n log n" based on false observation from Charles R Greathouse IV, Aug 22 2011 removed by Jianing Song, Mar 07 2021
Comments