A058867 Equidistant lonely primes. Each prime is the same distance (gap) from the preceding prime and the next prime. These distances are maximal: each distance is larger than all such previous distances.
5, 53, 211, 16787, 69623, 247141, 3565979, 4911311, 12012743, 23346809, 34346287, 36598607, 51042053, 383204683, 4470608101, 5007182863, 5558570491, 48287689717, 50284155289, 178796541817, 264860525507, 374787490919, 1521870804107, 2093308790851, 4228611064537, 6537587646671, 17432065861517, 22546768250359, 26923643849953, 187891466722913
Offset: 1
Keywords
Examples
47, 53 and 59 are primes. There are no other primes between 47 and 59 and 59-53=53-47=6. There are no other such primes with a smaller distance so 53 is included in the sequence.
Programs
-
Maple
Primes:= select(isprime,[2,seq(2*i+1,i=1..10^7)]): g:= 0: count:= 0: for i from 2 to nops(Primes)-1 do if Primes[i+1]+Primes[i-1] = 2*Primes[i] and Primes[i+1]-Primes[i] > g then count:= count+1; a[count]:= Primes[i]; g:= Primes[i+1]-Primes[i]; fi od: seq(a[i],i=1..count); # Robert Israel, Sep 20 2015
Extensions
a(21)-a(30) from Dmitry Petukhov, Sep 22 2015