A058868
Maximal distances of equidistant lonely primes shown in A058867.
Original entry on oeis.org
2, 6, 12, 24, 30, 42, 48, 60, 66, 72, 84, 90, 96, 144, 150, 156, 168, 186, 198, 204, 210, 228, 240, 258, 276, 300, 306, 348, 390, 420
Offset: 0
Harvey Dubner (harvey(AT)dubner.com), Dec 07 2000; extended Sep 11 2004
53 is an equidistant lonely prime. The distance to both the next prime and the previous prime is 6, larger than for any smaller prime. Thus 6 is in the sequence.
A054342
First occurrence of distances of equidistant lonely primes. Each equidistant prime is at the same distance (or has the same gap) from the preceding prime and the next prime.
Original entry on oeis.org
5, 53, 211, 20201, 16787, 69623, 255803, 247141, 3565979, 6314447, 4911311, 12012743, 23346809, 43607429, 34346287, 36598607, 51042053, 460475569, 652576429, 742585297, 530324449, 807620777, 2988119339, 12447231899, 383204683, 4470608101, 5007182863, 36589015601
Offset: 1
211 is an equidistant lonely prime with distance 12. This is the first occurrence of the distance 12, thus 211 is in the sequence.
20201 is a least balanced prime because it is the third term in the sequence and is separated from both the next lower and next higher primes by 3 * 6 = 18.
Here is the beginning of the table of equidistant lonely primes.
Equivalent to 3 consecutive primes in arithmetic progression.
* indicates a maximal gap. This table gives rise to A058867, A058868 and the present sequence.
Gap First occurrence
--- ----------------
2* 5
6* 53
12* 211
18 20201
24* 16787
30* 69623
36 255803
42* 247141
48* 3565979
54 6314447
60* 4911311
66* 12012743
72* 23346809
78 43607429
84* 34346287
90* 36598607
96* 51042053
102 460475569
108 652576429
Further terms from Harvey Dubner (harvey(AT)dubner.com), Sep 11 2004
4 further terms from Walter Neumann (neumann(AT)math.columbia.edu), Aug 14 2006
a(28) corrected, and terms after a(28) moved from Data section to b-file by
Jeppe Stig Nielsen, Apr 16 2022
A272021
Balanced primes separated from the next lower and next higher prime neighbors by 66.
Original entry on oeis.org
12012743, 12147463, 13408397, 15303667, 32676733, 34460407, 36050293, 36685867, 36804487, 37657423, 41516063, 51146867, 54702367, 56379217, 57203687, 58250207, 60696803, 63699127, 73576067, 74663377, 76853827, 78725443, 82015313, 92438317, 94073923, 94988423
Offset: 1
-
Prime[Last /@ SequencePosition[ Differences@ Prime@ Range[4 *10^6], {66, 66}]] (* Giovanni Resta, Apr 18 2016 *)
-
list(lim)=my(v=List(),p=2,q=3); forprime(r=5,nextprime(lim+1), if(q-p==66 && r-q==66, listput(v,q)); p=q;q=r); Vec(v) \\ Charles R Greathouse IV, Apr 18 2016
Showing 1-3 of 3 results.
Comments