A058880 a(n) = (1/(2n)) * Sum_{d|n} phi(d) * 2^(2n/d) + (2^((n-4)/2), if n is even).
12, 36, 104, 352, 1172, 4119, 14572, 52492, 190652, 699266, 2581112, 9587602, 35791472, 134219859, 505290272, 1908881998, 7233629132, 27487817244, 104715393912, 399822505942, 1529755308212, 5864062368274, 22517998136936
Offset: 3
Keywords
References
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 129, (5.3.3).
Links
- Amiram Eldar, Table of n, a(n) for n = 3..1666
Crossrefs
Cf. A053656.
Programs
-
Maple
A058880 := proc(n) local d,t1,t2; if n mod 2 = 0 then t1 := 2^((n-4)/2) else t1 := 0; fi; t2 := divisors(n); for d in t2 do t1 := t1+phi(d)*2^(2*n/d)/(2*n); od; t1; end;
-
Mathematica
a[n_] := DivisorSum[n, EulerPhi[#]*2^(2n/#) &]/(2n) + If[OddQ[n], 0, 2^((n - 4)/2)]; Array[a, 23, 3] (* Amiram Eldar, Aug 28 2019 *)
-
PARI
a(n) = sumdiv(n, d, eulerphi(d)*2^(2*n/d))/(2*n) + if (!(n%2), 2^((n-4)/2)); \\ Michel Marcus, Aug 29 2019
Formula
a(n) = (1/(2n)) * Sum_{d|n} phi(d) * 2^(2n/d) + (2^((n-4)/2), if n is even). - Amiram Eldar, Aug 28 2019
Extensions
New name, using existing formula, from Pontus von Brömssen, Mar 30 2022
Comments