A058985 a(n) = 6 + 33*n + 6*binomial(n, 2) - 28*binomial(n, 3) + 20*binomial(n, 4) - 47*binomial(n, 5).
6, 39, 78, 95, 82, 4, -248, -904, -2362, -5235, -10398, -19035, -32686, -53294, -83252, -125450, -183322, -260893, -362826, -494469, -661902, -871984, -1132400, -1451708, -1839386, -2305879, -2862646, -3522207, -4298190, -5205378, -6259756, -7478558
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Cf. A058897.
Programs
-
Mathematica
CoefficientList[Series[(6+3x-66x^2+92x^3-8x^4-74x^5)/(1-x)^6,{x,0,40}],x] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{6,39,78,95,82,4},40] (* Harvey P. Dale, Sep 14 2024 *)
-
PARI
a(n) = { 6 + 33*n + 6*binomial(n,2) - 28*binomial(n,3) + 20*binomial(n,4) - 47*binomial(n,5) } \\ Harry J. Smith, Jun 24 2009
Formula
a(n) = 6 + 94/15*n + 183/4*n^2 - 187/8*n^3 + 19/4*n^4 - 47/120*n^5.
G.f.: (6+3*x-66*x^2+92*x^3-8*x^4-74*x^5)/(1-x)^6. - Colin Barker, Apr 23 2012
Comments