A058936 Decomposition of Stirling's S(n,2) based on associated numeric partitions.
0, 1, 3, 8, 3, 30, 20, 144, 90, 40, 840, 504, 420, 5760, 3360, 2688, 1260, 45360, 25920, 20160, 18144, 403200, 226800, 172800, 151200, 72576, 3991680, 2217600, 1663200, 1425600, 1330560, 43545600, 23950080, 17740800, 14968800, 13685760, 6652800, 518918400
Offset: 1
Examples
Triangle begins: 0; 1; 3; 8, 3; 30, 20; 144, 90, 40; 840, 504, 420; ...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 831.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Crossrefs
Formula
From Sean A. Irvine, Sep 05 2022: (Start)
T(1,1) = 0.
T(n,k) = n! / (k * (n-k)) for 1 <= k < n/2.
T(2n,n) = (2*n)! / (2*n^2).
(End)
Extensions
More terms from Sean A. Irvine, Sep 05 2022
Comments