A058937 Maximal exponent of x in all terms of Somos polynomial of order n.
1, 0, 0, 0, 0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, 40, 45, 51, 57, 63, 70, 77, 84, 92, 100, 108, 117, 126, 135, 145, 155, 165, 176, 187, 198, 210, 222, 234, 247, 260, 273, 287, 301, 315, 330, 345, 360, 376, 392, 408, 425, 442, 459, 477, 495, 513, 532, 551
Offset: 1
Keywords
Links
- Michael Somos, Somos Polynomials
- Index entries for linear recurrences with constant coefficients, signature (2, -1, 1, -2, 1).
Crossrefs
Cf. A001840.
Programs
-
Mathematica
e[1] = 1; e[2] = e[3] = e[4] = e[5] = 0; e[n_] := e[n] = 1 + e[n - 1] + e[n - 3] - e[n - 4]; Table[e[n], {n, 1, 70}] a[ n_] := Quotient[ Binomial[n - 3, 2], 3]; (* Michael Somos, Oct 18 2018 *)
-
PARI
{a(n) = binomial(n-3, 2)\3}; /* Michael Somos, Oct 18 2018 */
-
Sage
[floor(binomial(n,2)/3) for n in range(-2,59)] # Zerinvary Lajos, Dec 01 2009
Formula
a(n) = 1 + a(n-1) + a(n-3) - a(n-4) for all n in Z.
G.f.: x*(1-2*x+x^2-x^3+2*x^4)/((1+x+x^2)* (1-x)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
a(n) = a(7-n) for all n in Z. - Michael Somos, Oct 18 2018
Extensions
G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009
Comments