cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058937 Maximal exponent of x in all terms of Somos polynomial of order n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, 40, 45, 51, 57, 63, 70, 77, 84, 92, 100, 108, 117, 126, 135, 145, 155, 165, 176, 187, 198, 210, 222, 234, 247, 260, 273, 287, 301, 315, 330, 345, 360, 376, 392, 408, 425, 442, 459, 477, 495, 513, 532, 551
Offset: 1

Views

Author

Robert G. Wilson v, Jan 11 2001

Keywords

Comments

This sequence differs from A001840 only in four terms preceding it. That is, A001840(n) = a(n+5).
Let b(n) = 2^a(n+1). Then b(1)=b(2)=b(3)=b(4)=1 and b(n)*b(n-4) = b(n-1)*b(n-3) + c(n)*b(n-2)^2, c(3*n)=2, c(3*n+1)=c(3*n+2)=1 for all n in Z. - Michael Somos, Oct 18 2018

Crossrefs

Cf. A001840.

Programs

  • Mathematica
    e[1] = 1; e[2] = e[3] = e[4] = e[5] = 0; e[n_] := e[n] = 1 + e[n - 1] + e[n - 3] - e[n - 4]; Table[e[n], {n, 1, 70}]
    a[ n_] := Quotient[ Binomial[n - 3, 2], 3]; (* Michael Somos, Oct 18 2018 *)
  • PARI
    {a(n) = binomial(n-3, 2)\3}; /* Michael Somos, Oct 18 2018 */
  • Sage
    [floor(binomial(n,2)/3) for n in range(-2,59)] # Zerinvary Lajos, Dec 01 2009
    

Formula

a(n) = 1 + a(n-1) + a(n-3) - a(n-4) for all n in Z.
G.f.: x*(1-2*x+x^2-x^3+2*x^4)/((1+x+x^2)* (1-x)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
a(n) = a(7-n) for all n in Z. - Michael Somos, Oct 18 2018

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009