A058984 Number of partitions of n in which number of parts is not 2.
1, 1, 1, 2, 3, 5, 8, 12, 18, 26, 37, 51, 71, 95, 128, 169, 223, 289, 376, 481, 617, 782, 991, 1244, 1563, 1946, 2423, 2997, 3704, 4551, 5589, 6827, 8333, 10127, 12293, 14866, 17959, 21619, 25996, 31166, 37318, 44563, 53153, 63240, 75153
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..2000
- Washington Bomfim, Star-like trees of 7 edges and correspondent partitions
- Arnold Knopfmacher, Robert F. Tichy, Stephan Wagner and Volker Ziegler, Graphs, Partitions and Fibonacci Numbers (See Theorem 14.)
- Stephan Wagner, Graph-theoretical enumeration and digital expansions: an analytic approach, Dissertation, Fakult. f. Tech. Math. u. Tech. Physik, Tech. Univ. Graz, Austria, Feb., 2006.
- Index entries for sequences related to trees
Crossrefs
Cf. A000041.
Programs
-
Maple
seq(combinat:-numbpart(n) - floor(n/2), n=0..50); # Robert Israel, Nov 07 2016
-
Mathematica
f[n_] := PartitionsP@ n - Floor[n/2]; Array[f, 45, 0]
-
PARI
a(n) = numbpart(n) - n\2; \\ Michel Marcus, Nov 01 2016
Formula
a(n) = p(n) - floor(n/2), where p(n) = number of partitions of n = A000041(n).
Comments