A004250
Number of partitions of n into 3 or more parts.
Original entry on oeis.org
0, 0, 1, 2, 4, 7, 11, 17, 25, 36, 50, 70, 94, 127, 168, 222, 288, 375, 480, 616, 781, 990, 1243, 1562, 1945, 2422, 2996, 3703, 4550, 5588, 6826, 8332, 10126, 12292, 14865, 17958, 21618, 25995, 31165, 37317, 44562
Offset: 1
a(6)=7 because there are three partitions of n=6 with i=3 parts: [4, 1, 1], [3, 2, 1], [2, 2, 2] and two partitions with i=4 parts: [3, 1, 1, 1], [2, 2, 1, 1] and one partition with i=5 parts: [2, 1, 1, 1, 1] and one partition with i=6 parts: [1, 1, 1, 1, 1, 1].
From _Gus Wiseman_, Jan 18 2021: (Start)
The a(3) = 1 through a(7) = 11 graphical partitions of 2n into n parts:
(222) (2222) (22222) (222222) (2222222)
(3221) (32221) (322221) (3222221)
(33211) (332211) (3322211)
(42211) (333111) (3332111)
(422211) (4222211)
(432111) (4322111)
(522111) (4331111)
(4421111)
(5222111)
(5321111)
(6221111)
(End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978).
- T. M. Barnes and C. D. Savage, A recurrence for counting graphical partitions, Electronic J. Combinatorics, 2 (1995).
- N. Metropolis and P. R. Stein, The enumeration of graphical partitions, Europ. J. Combin., 1 (1980), 139-1532.
- P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978). [Annotated scanned copy]
- Eric Weisstein's World of Mathematics. Spider Graph
- Wikipedia, Starlike tree
- Index entries for sequences related to graphical partitions
A008284 counts partitions by sum and length.
A027187 counts partitions of even length.
A309356 ranks simple covering graphs.
The following count vertex-degree partitions and give their Heinz numbers:
-
with(combinat);
for i from 1 to 15 do pik(i,3) od;
pik:= proc(n::integer, k::integer)
# Thomas Wieder, Jan 30 2007
local i, Liste, Result;
if k > n or n < 0 or k < 1 then
return fail
end if;
Result := 0;
for i from k to n do
Liste:= PartitionList(n,i);
#print(Liste);
Result := Result + nops(Liste);
end do;
return Result;
end proc;
PartitionList := proc (n, k)
# Authors: Herbert S. Wilf and Joanna Nordlicht. Source: Lecture Notes
# "East Side West Side,..." University of Pennsylvania, USA, 2002.
# Available at: http://www.cis.upenn.edu/~wilf/lecnotes.html
# Calculates the partition of n into k parts.
# E.g. PartitionList(5,2) --> [[4, 1], [3, 2]].
local East, West;
if n < 1 or k < 1 or n < k then
RETURN([])
elif n = 1 then
RETURN([[1]])
else if n < 2 or k < 2 or n < k then
West := []
else
West := map(proc (x) options operator, arrow;
[op(x), 1] end proc,PartitionList(n-1,k-1)) end if;
if k <= n-k then
East := map(proc (y) options operator, arrow;
map(proc (x) options operator, arrow; x+1 end proc,y) end proc,PartitionList(n-k,k))
else East := [] end if;
RETURN([op(West), op(East)])
end if;
end proc;
# Thomas Wieder, Feb 01 2007
ZL :=[S, {S = Set(Cycle(Z),3 <= card)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=1..41); # Zerinvary Lajos, Mar 25 2008
B:=[S,{S = Set(Sequence(Z,1 <= card),card >=3)},unlabelled]: seq(combstruct[count](B, size=n), n=1..41); # Zerinvary Lajos, Mar 21 2009
-
Length /@ Table[Select[Partitions[n], Length[#] > 2 &], {n, 20}] (* Eric W. Weisstein, May 16 2007 *)
Table[Count[Length /@ Partitions[n], ?(# > 2 &)], {n, 20}] (* _Eric W. Weisstein, May 16 2017 *)
Table[PartitionsP[n] - Floor[n/2] - 1, {n, 20}] (* Eric W. Weisstein, May 16 2017 *)
Length /@ Table[IntegerPartitions[n, {3, n}], {n, 20}] (* Eric W. Weisstein, May 16 2017 *)
-
a(n) = numbpart(n) - (n+2)\2; /* Joerg Arndt, Apr 03 2013 */
A238628
Number of partitions p of n such that n - max(p) is a part of p.
Original entry on oeis.org
0, 1, 1, 3, 2, 5, 3, 8, 4, 11, 5, 16, 6, 21, 7, 29, 8, 38, 9, 51, 10, 66, 11, 88, 12, 113, 13, 148, 14, 190, 15, 246, 16, 313, 17, 402, 18, 508, 19, 646, 20, 812, 21, 1023, 22, 1277, 23, 1598, 24, 1982, 25, 2461, 26, 3036, 27, 3745, 28, 4593, 29, 5633
Offset: 1
a(6) counts these partitions: 51, 42, 33, 321, 3111.
The complement is counted by
A365825.
These partitions are ranked by
A366318.
A182616 counts partitions of 2n that do not contain n, strict
A365828.
-
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, n - Max[p]]], {n, 50}]
-
a(n) = my(res = floor(n/2)); if(!bitand(n, 1), res+=(numbpart(n/2)-1)); res
-
from sympy.utilities.iterables import partitions
def A238628(n): return sum(1 for p in partitions(n) if n-max(p,default=0) in p) # Chai Wah Wu, Sep 21 2023
A130131
Number of n-lobsters.
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 11, 23, 47, 105, 231, 532, 1224, 2872, 6739, 15955, 37776, 89779, 213381, 507949, 1209184, 2880382, 6861351, 16348887, 38955354, 92831577, 221219963, 527197861, 1256385522, 2994200524, 7135736613, 17005929485, 40528629737, 96588403995, 230190847410
Offset: 1
a(10) = 105 = A000055(10) - 1 because all trees with 10 vertices are lobsters except this one:
o-o-o
/
o-o-o-o
\
o-o-o
Also, all trees with 10 vertices are linear (all vertices of degree >2 belong to a single path) except this one:
o o
\ /
o
|
o
/ \
o o
/ \ / \
o o o o
-
eta = QPochhammer;
s[n_] := With[{ox = O[x]^n}, x^2 ((1/eta[x + ox] - 1/(1 - x))^2/(1 - x/eta[x + ox]) + (1/eta[x^2 + ox] - 1/(1 - x^2))(1 + x/eta[x + ox])/(1 - x^2/eta[x^2 + ox]))/2 + x/eta[x + ox] - x^3/((1 - x)^2*(1 + x))];
CoefficientList[s[32], x] // Rest (* Jean-François Alcover, Nov 17 2020, after Andrew Howroyd *)
-
s(n)={my(ox=O(x^n)); x^2*((1/eta(x+ox)-1/(1-x))^2/(1-x/eta(x+ox)) + (1/eta(x^2+ox)-1/(1-x^2))*(1+x/eta(x+ox))/(1-x^2/eta(x^2+ox)))/2 + x/eta(x+ox) - x^3/((1-x)^2*(1+x))}
Vec(s(30)) \\ Andrew Howroyd, Nov 02 2017
A332706
Index position of {2}^n within the list of partitions of 2n in canonical ordering.
Original entry on oeis.org
1, 1, 3, 8, 18, 37, 71, 128, 223, 376, 617, 991, 1563, 2423, 3704, 5589, 8333, 12293, 17959, 25996, 37318, 53153, 75153, 105535, 147249, 204201, 281563, 386128, 526795, 715191, 966437, 1300125, 1741598, 2323487, 3087701, 4087933, 5392747, 7089463, 9289053
Offset: 0
a(3) = 8, because 222 has position 8 within the list of partitions of 6 in canonical ordering: 6, 51, 42, 411, 33, 321, 3111, 222, ... .
-
a:= n-> combinat[numbpart](2*n)-n:
seq(a(n), n=0..44);
-
a[n_] := PartitionsP[2n] - n;
Table[a[n], {n, 0, 44}] (* Jean-François Alcover, Aug 20 2021, from Maple *)
A365825
Number of integer partitions of n that are not of length 2 and do not contain n/2.
Original entry on oeis.org
1, 1, 1, 2, 2, 5, 6, 12, 14, 26, 31, 51, 61, 95, 114, 169, 202, 289, 347, 481, 576, 782, 936, 1244, 1487, 1946, 2323, 2997, 3570, 4551, 5414, 6827, 8103, 10127, 11997, 14866, 17575, 21619, 25507, 31166, 36692, 44563, 52362, 63240, 74152, 89112, 104281, 124731
Offset: 0
The a(1) = 1 through a(8) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(111) (1111) (221) (222) (322) (332)
(311) (411) (331) (521)
(2111) (2211) (421) (611)
(11111) (21111) (511) (2222)
(111111) (2221) (3221)
(3211) (3311)
(4111) (5111)
(22111) (22211)
(31111) (32111)
(211111) (221111)
(1111111) (311111)
(2111111)
(11111111)
The complement is counted by
A238628.
A046663 counts partitions with no submultiset summing to k, strict
A365663.
A182616 counts partitions of 2n that do not contain n, strict
A365828.
-
Table[Length[Select[IntegerPartitions[n],Length[#]!=2&&FreeQ[#,n/2]&]],{n,0,15}]
-
from sympy import npartitions
def A365825(n): return npartitions(n)-(m:=n>>1)-(0 if n&1 else npartitions(m)-1) # Chai Wah Wu, Sep 23 2023
A365827
Number of strict integer partitions of n whose length is not 2.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 12, 16, 20, 25, 30, 38, 45, 55, 66, 79, 93, 111, 130, 153, 179, 209, 242, 282, 325, 375, 432, 496, 568, 651, 742, 846, 963, 1094, 1240, 1406, 1589, 1795, 2026, 2282, 2567, 2887, 3240, 3634, 4072, 4557, 5094, 5692, 6351
Offset: 0
The a(5) = 1 through a(13) = 12 strict partitions (A..D = 10..13):
(5) (6) (7) (8) (9) (A) (B) (C) (D)
(321) (421) (431) (432) (532) (542) (543) (643)
(521) (531) (541) (632) (642) (652)
(621) (631) (641) (651) (742)
(721) (731) (732) (751)
(4321) (821) (741) (832)
(5321) (831) (841)
(921) (931)
(5421) (A21)
(6321) (5431)
(6421)
(7321)
The complement is counted by
A140106 shifted left.
A046663 counts partitions with no submultiset summing to k, strict
A365663.
A182616 counts partitions of 2n that do not contain n, strict
A365828.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[#]!=2&]],{n,0,30}]
A365826
Number of strict integer partitions of n that are not of length 2 and do not contain n/2.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 20, 20, 30, 31, 45, 46, 66, 68, 93, 97, 130, 136, 179, 188, 242, 256, 325, 344, 432, 459, 568, 606, 742, 793, 963, 1031, 1240, 1331, 1589, 1707, 2026, 2179, 2567, 2766, 3240, 3493, 4072, 4393, 5094, 5501, 6351
Offset: 0
The a(6) = 1 through a(12) = 7 strict partitions:
(6) (7) (8) (9) (10) (11) (12)
(4,2,1) (5,2,1) (4,3,2) (6,3,1) (5,4,2) (5,4,3)
(5,3,1) (7,2,1) (6,3,2) (7,3,2)
(6,2,1) (4,3,2,1) (6,4,1) (7,4,1)
(7,3,1) (8,3,1)
(8,2,1) (9,2,1)
(5,3,2,1) (5,4,2,1)
The complement is counted by
A365659.
A182616 counts partitions of 2n that do not contain n, strict
A365828.
Cf.
A004526,
A005408,
A008967,
A035363,
A058984,
A086543,
A100959,
A344415,
A365376,
A365377,
A365543.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Tuples[#,2],n]&]], {n,0,30}]
A366318
Heinz numbers of integer partitions that are of length 2 or begin with n/2, where n is the sum of all parts.
Original entry on oeis.org
4, 6, 9, 10, 12, 14, 15, 21, 22, 25, 26, 30, 33, 34, 35, 38, 39, 40, 46, 49, 51, 55, 57, 58, 62, 63, 65, 69, 70, 74, 77, 82, 84, 85, 86, 87, 91, 93, 94, 95, 106, 111, 112, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 154, 155, 158, 159
Offset: 1
The terms together with their prime indices begin:
4: {1,1} 38: {1,8} 77: {4,5}
6: {1,2} 39: {2,6} 82: {1,13}
9: {2,2} 40: {1,1,1,3} 84: {1,1,2,4}
10: {1,3} 46: {1,9} 85: {3,7}
12: {1,1,2} 49: {4,4} 86: {1,14}
14: {1,4} 51: {2,7} 87: {2,10}
15: {2,3} 55: {3,5} 91: {4,6}
21: {2,4} 57: {2,8} 93: {2,11}
22: {1,5} 58: {1,10} 94: {1,15}
25: {3,3} 62: {1,11} 95: {3,8}
26: {1,6} 63: {2,2,4} 106: {1,16}
30: {1,2,3} 65: {3,6} 111: {2,12}
33: {2,5} 69: {2,9} 112: {1,1,1,1,4}
34: {1,7} 70: {1,3,4} 115: {3,9}
35: {3,4} 74: {1,12} 118: {1,17}
The partitions with these Heinz numbers are counted by
A238628.
The complement of the second condition is
A366319, counted by
A086543.
A001222 counts prime factors with multiplicity.
A334201 adds up all prime indices except the greatest.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Length[prix[#]]==2||MemberQ[prix[#],Total[prix[#]]/2]&]
A186310
Total Wiener index of star-like trees with n edges.
Original entry on oeis.org
1, 4, 19, 54, 145, 350, 726, 1462, 2710, 4846, 8166, 13730, 21741, 34350, 52488, 79518, 117141, 172224, 246993, 353464, 496721, 694952, 958374, 1318174, 1789077, 2420888, 3243045, 4329098, 5728140, 7557906, 9893327, 12913820, 16746136
Offset: 1
The Bomfim link shows a way to find a(7).
- Washington Bomfim, Table of n, a(n) for n = 1..140
- Washington Bomfim, Example
- Arnold Knopfmacher, Robert F. Tichy, Stephan Wagner, and Volker Ziegler, Graphs, Partitions and Fibonacci Numbers
- Stephan Wagner, Graph-theoretical enumeration and digital expansions: an analytic approach, Dissertation, Fakult. f. Tech. Math. u. Tech. Physik, Tech. Univ. Graz, Austria, Feb. 2006.
A365829
Squarefree non-semiprimes.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 42, 43, 47, 53, 59, 61, 66, 67, 70, 71, 73, 78, 79, 83, 89, 97, 101, 102, 103, 105, 107, 109, 110, 113, 114, 127, 130, 131, 137, 138, 139, 149, 151, 154, 157, 163, 165, 167, 170, 173, 174, 179, 181, 182, 186
Offset: 1
The terms together with their prime indices begin:
1: {} 43: {14} 102: {1,2,7}
2: {1} 47: {15} 103: {27}
3: {2} 53: {16} 105: {2,3,4}
5: {3} 59: {17} 107: {28}
7: {4} 61: {18} 109: {29}
11: {5} 66: {1,2,5} 110: {1,3,5}
13: {6} 67: {19} 113: {30}
17: {7} 70: {1,3,4} 114: {1,2,8}
19: {8} 71: {20} 127: {31}
23: {9} 73: {21} 130: {1,3,6}
29: {10} 78: {1,2,6} 131: {32}
30: {1,2,3} 79: {22} 137: {33}
31: {11} 83: {23} 138: {1,2,9}
37: {12} 89: {24} 139: {34}
41: {13} 97: {25} 149: {35}
42: {1,2,4} 101: {26} 151: {36}
First condition alone is
A005117 (squarefree).
Second condition alone is
A100959 (non-semiprime).
The nonprime case is 1 followed by
A350352.
-
Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]!=2&]
-
isok(k) = my(f=factor(k)); issquarefree(f) && (bigomega(f) != 2); \\ Michel Marcus, Oct 07 2023
Showing 1-10 of 10 results.
Comments