cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A238628 Number of partitions p of n such that n - max(p) is a part of p.

Original entry on oeis.org

0, 1, 1, 3, 2, 5, 3, 8, 4, 11, 5, 16, 6, 21, 7, 29, 8, 38, 9, 51, 10, 66, 11, 88, 12, 113, 13, 148, 14, 190, 15, 246, 16, 313, 17, 402, 18, 508, 19, 646, 20, 812, 21, 1023, 22, 1277, 23, 1598, 24, 1982, 25, 2461, 26, 3036, 27, 3745, 28, 4593, 29, 5633
Offset: 1

Views

Author

Clark Kimberling, Mar 02 2014

Keywords

Comments

Also the number of integer partitions of n that are of length 2 or contain n/2. The first condition alone is A004526, complement A058984. The second condition alone is A035363, complement A086543, ranks A344415. - Gus Wiseman, Oct 07 2023

Examples

			a(6) counts these partitions:  51, 42, 33, 321, 3111.
		

Crossrefs

Cf. A238479.
The strict case is A365659, complement A365826.
The complement is counted by A365825.
These partitions are ranked by A366318.
A000041 counts integer partitions, strict A000009.
A140106 counts strict partitions of length 2, complement A365827.
A182616 counts partitions of 2n that do not contain n, strict A365828.

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, n - Max[p]]], {n, 50}]
  • PARI
    a(n) = my(res = floor(n/2)); if(!bitand(n, 1), res+=(numbpart(n/2)-1)); res
  • Python
    from sympy.utilities.iterables import partitions
    def A238628(n): return sum(1 for p in partitions(n) if n-max(p,default=0) in p) # Chai Wah Wu, Sep 21 2023
    

A365827 Number of strict integer partitions of n whose length is not 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 12, 16, 20, 25, 30, 38, 45, 55, 66, 79, 93, 111, 130, 153, 179, 209, 242, 282, 325, 375, 432, 496, 568, 651, 742, 846, 963, 1094, 1240, 1406, 1589, 1795, 2026, 2282, 2567, 2887, 3240, 3634, 4072, 4557, 5094, 5692, 6351
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2023

Keywords

Comments

Also the number of strict integer partitions of n with no pair of distinct parts summing to n.

Examples

			The a(5) = 1 through a(13) = 12 strict partitions (A..D = 10..13):
  (5)  (6)    (7)    (8)    (9)    (A)     (B)     (C)     (D)
       (321)  (421)  (431)  (432)  (532)   (542)   (543)   (643)
                     (521)  (531)  (541)   (632)   (642)   (652)
                            (621)  (631)   (641)   (651)   (742)
                                   (721)   (731)   (732)   (751)
                                   (4321)  (821)   (741)   (832)
                                           (5321)  (831)   (841)
                                                   (921)   (931)
                                                   (5421)  (A21)
                                                   (6321)  (5431)
                                                           (6421)
                                                           (7321)
		

Crossrefs

The complement is counted by A140106 shifted left.
Heinz numbers are A005117 \ A006881 = A005117 /\ A100959.
The non-strict version is A058984, complement A004526.
The case not containing n/2 is A365826, non-strict A365825.
A000041 counts integer partitions, strict A000009.
A046663 counts partitions with no submultiset summing to k, strict A365663.
A182616 counts partitions of 2n that do not contain n, strict A365828.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[#]!=2&]],{n,0,30}]

Formula

a(n) = A000009(n) - A004526(n-1) for n > 0.

A366321 Numbers m whose prime indices have even sum k such that k/2 is not a prime index of m.

Original entry on oeis.org

1, 3, 7, 10, 13, 16, 19, 21, 22, 27, 28, 29, 34, 36, 37, 39, 43, 46, 48, 52, 53, 55, 57, 61, 62, 64, 66, 71, 75, 76, 79, 81, 82, 85, 87, 88, 89, 90, 91, 94, 100, 101, 102, 107, 108, 111, 113, 115, 116, 117, 118, 120, 129, 130, 131, 133, 134, 136, 138, 139, 144
Offset: 0

Views

Author

Gus Wiseman, Oct 13 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 84 are y = {1,1,2,4}, with even sum 8; but 8/2 = 4 is in y, so 84 is not in the sequence.
The terms together with their prime indices begin:
    1: {}
    3: {2}
    7: {4}
   10: {1,3}
   13: {6}
   16: {1,1,1,1}
   19: {8}
   21: {2,4}
   22: {1,5}
   27: {2,2,2}
   28: {1,1,4}
   29: {10}
   34: {1,7}
   36: {1,1,2,2}
		

Crossrefs

Partitions of this type are counted by A182616, strict A365828.
A066207 lists numbers with all even prime indices, odd A066208.
A086543 lists numbers with at least one odd prime index, counted by A366322.
A300063 ranks partitions of odd numbers.
A366319 ranks partitions of n not containing n/2.
A366321 ranks partitions of 2k that do not contain k.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[Total[prix[#]]]&&FreeQ[prix[#],Total[prix[#]]/2]&]

A365826 Number of strict integer partitions of n that are not of length 2 and do not contain n/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 20, 20, 30, 31, 45, 46, 66, 68, 93, 97, 130, 136, 179, 188, 242, 256, 325, 344, 432, 459, 568, 606, 742, 793, 963, 1031, 1240, 1331, 1589, 1707, 2026, 2179, 2567, 2766, 3240, 3493, 4072, 4393, 5094, 5501, 6351
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2023

Keywords

Comments

Also the number of strict integer partitions of n without two parts (allowing parts to be re-used) summing to n.

Examples

			The a(6) = 1 through a(12) = 7 strict partitions:
  (6)  (7)      (8)      (9)      (10)       (11)       (12)
       (4,2,1)  (5,2,1)  (4,3,2)  (6,3,1)    (5,4,2)    (5,4,3)
                         (5,3,1)  (7,2,1)    (6,3,2)    (7,3,2)
                         (6,2,1)  (4,3,2,1)  (6,4,1)    (7,4,1)
                                             (7,3,1)    (8,3,1)
                                             (8,2,1)    (9,2,1)
                                             (5,3,2,1)  (5,4,2,1)
		

Crossrefs

The second condition alone has bisections A078408 and A365828.
The complement is counted by A365659.
The non-strict version is A365825, complement A238628.
The first condition alone is A365827, complement A140106.
A000041 counts integer partitions, strict A000009.
A182616 counts partitions of 2n that do not contain n, strict A365828.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Tuples[#,2],n]&]], {n,0,30}]
Showing 1-4 of 4 results.