cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A238628 Number of partitions p of n such that n - max(p) is a part of p.

Original entry on oeis.org

0, 1, 1, 3, 2, 5, 3, 8, 4, 11, 5, 16, 6, 21, 7, 29, 8, 38, 9, 51, 10, 66, 11, 88, 12, 113, 13, 148, 14, 190, 15, 246, 16, 313, 17, 402, 18, 508, 19, 646, 20, 812, 21, 1023, 22, 1277, 23, 1598, 24, 1982, 25, 2461, 26, 3036, 27, 3745, 28, 4593, 29, 5633
Offset: 1

Views

Author

Clark Kimberling, Mar 02 2014

Keywords

Comments

Also the number of integer partitions of n that are of length 2 or contain n/2. The first condition alone is A004526, complement A058984. The second condition alone is A035363, complement A086543, ranks A344415. - Gus Wiseman, Oct 07 2023

Examples

			a(6) counts these partitions:  51, 42, 33, 321, 3111.
		

Crossrefs

Cf. A238479.
The strict case is A365659, complement A365826.
The complement is counted by A365825.
These partitions are ranked by A366318.
A000041 counts integer partitions, strict A000009.
A140106 counts strict partitions of length 2, complement A365827.
A182616 counts partitions of 2n that do not contain n, strict A365828.

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, n - Max[p]]], {n, 50}]
  • PARI
    a(n) = my(res = floor(n/2)); if(!bitand(n, 1), res+=(numbpart(n/2)-1)); res
  • Python
    from sympy.utilities.iterables import partitions
    def A238628(n): return sum(1 for p in partitions(n) if n-max(p,default=0) in p) # Chai Wah Wu, Sep 21 2023
    

A366319 Numbers k such that the sum of prime indices of k is not twice the maximum prime index of k, meaning A056239(k) != 2 * A061395(k).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76
Offset: 1

Views

Author

Gus Wiseman, Oct 10 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of integer partitions containing n/2, where n is the sum of all parts.

Examples

			The prime indices of 90 are {1,2,2,3}, with sum 8 and twice maximum 6, so 90 is in the sequence.
		

Crossrefs

Partitions of this type are counted by A086543.
For length instead of maximum we have the complement of A340387.
The complement is A344415, counted by A035363.
A001221 counts distinct prime factors, A001222 with multiplicity.
A056239 adds up prime indices, row sums of A112798.
A334201 adds up all prime indices except the greatest.
A344291 lists numbers m with A001222(m) <= A056239(m)/2, counted by A110618.
A344296 lists numbers m with A001222(m) >= A056239(m)/2, counted by A025065.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Max[prix[#]]!=Total[prix[#]]/2&]

A366321 Numbers m whose prime indices have even sum k such that k/2 is not a prime index of m.

Original entry on oeis.org

1, 3, 7, 10, 13, 16, 19, 21, 22, 27, 28, 29, 34, 36, 37, 39, 43, 46, 48, 52, 53, 55, 57, 61, 62, 64, 66, 71, 75, 76, 79, 81, 82, 85, 87, 88, 89, 90, 91, 94, 100, 101, 102, 107, 108, 111, 113, 115, 116, 117, 118, 120, 129, 130, 131, 133, 134, 136, 138, 139, 144
Offset: 0

Views

Author

Gus Wiseman, Oct 13 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 84 are y = {1,1,2,4}, with even sum 8; but 8/2 = 4 is in y, so 84 is not in the sequence.
The terms together with their prime indices begin:
    1: {}
    3: {2}
    7: {4}
   10: {1,3}
   13: {6}
   16: {1,1,1,1}
   19: {8}
   21: {2,4}
   22: {1,5}
   27: {2,2,2}
   28: {1,1,4}
   29: {10}
   34: {1,7}
   36: {1,1,2,2}
		

Crossrefs

Partitions of this type are counted by A182616, strict A365828.
A066207 lists numbers with all even prime indices, odd A066208.
A086543 lists numbers with at least one odd prime index, counted by A366322.
A300063 ranks partitions of odd numbers.
A366319 ranks partitions of n not containing n/2.
A366321 ranks partitions of 2k that do not contain k.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[Total[prix[#]]]&&FreeQ[prix[#],Total[prix[#]]/2]&]
Showing 1-3 of 3 results.