A086543
Number of partitions of n with at least one odd part.
Original entry on oeis.org
0, 1, 1, 3, 3, 7, 8, 15, 17, 30, 35, 56, 66, 101, 120, 176, 209, 297, 355, 490, 585, 792, 946, 1255, 1498, 1958, 2335, 3010, 3583, 4565, 5428, 6842, 8118, 10143, 12013, 14883, 17592, 21637, 25525, 31185, 36711, 44583, 52382, 63261, 74173, 89134, 104303, 124754, 145698, 173525, 202268
Offset: 0
a(4)=3 because we have [3,1],[2,1,1] and [1,1,1] ([4] and [2,2] do not qualify).
These partitions have ranks
A366322.
-
g:=sum(x^(2*k-1)/product(1-x^j,j=1..2*k-1)/product(1-x^(2*j),j=k..70),k=1..70): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=0..45); # Emeric Deutsch, Mar 30 2006
-
nn=50;CoefficientList[Series[Sum[x^(2k-1)/Product[1-x^j,{j,1,2k-1}] /Product[(1-x^(2j)),{j,k,nn}],{k,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 28 2013 *)
Table[Length[Select[IntegerPartitions[n],Max[#]!=n/2&]],{n,0,30}] (* Gus Wiseman, Oct 12 2023 *)
-
x='x+O('x^66); concat([0], Vec(1/eta(x)-1/eta(x^2)) ) \\ Joerg Arndt, May 04 2013
A182616
Number of partitions of 2n that contain odd parts.
Original entry on oeis.org
0, 1, 3, 8, 17, 35, 66, 120, 209, 355, 585, 946, 1498, 2335, 3583, 5428, 8118, 12013, 17592, 25525, 36711, 52382, 74173, 104303, 145698, 202268, 279153, 383145, 523105, 710655, 960863, 1293314, 1733281, 2313377, 3075425, 4073085, 5374806, 7067863, 9263076
Offset: 0
For n=3 the partitions of 2n are
6 ....................... does not contains odd parts
3 + 3 ................... contains odd parts ........... *
4 + 2 ................... does not contains odd parts
2 + 2 + 2 ............... does not contains odd parts
5 + 1 ................... contains odd parts ........... *
3 + 2 + 1 ............... contains odd parts ........... *
4 + 1 + 1 ............... contains odd parts ........... *
2 + 2 + 1 + 1 ........... contains odd parts ........... *
3 + 1 + 1 + 1 ........... contains odd parts ........... *
2 + 1 + 1 + 1 + 1 ....... contains odd parts ........... *
1 + 1 + 1 + 1 + 1 + 1 ... contains odd parts ........... *
There are 8 partitions of 2n that contain odd parts.
Also p(2n)-p(n) = p(6)-p(3) = 11-3 = 8, where p(n) is the number of partitions of n, so a(3)=8.
From _Gus Wiseman_, Oct 18 2023: (Start)
For n > 0, also the number of integer partitions of 2n that do not contain n, ranked by A366321. For example, the a(1) = 1 through a(4) = 17 partitions are:
(2) (4) (6) (8)
(31) (42) (53)
(1111) (51) (62)
(222) (71)
(411) (332)
(2211) (521)
(21111) (611)
(111111) (2222)
(3221)
(3311)
(5111)
(22211)
(32111)
(221111)
(311111)
(2111111)
(11111111)
(End)
These partitions have ranks
A366530.
A006477 counts partitions with at least one odd and even part, ranks
A366532.
-
with(combinat): a:= n-> numbpart(2*n) -numbpart(n): seq(a(n), n=0..35);
-
Table[Length[Select[IntegerPartitions[2n],n>0&&FreeQ[#,n]&]],{n,0,15}] (* Gus Wiseman, Oct 11 2023 *)
Table[Length[Select[IntegerPartitions[2n],Or@@OddQ/@#&]],{n,0,15}] (* Gus Wiseman, Oct 11 2023 *)
A366321
Numbers m whose prime indices have even sum k such that k/2 is not a prime index of m.
Original entry on oeis.org
1, 3, 7, 10, 13, 16, 19, 21, 22, 27, 28, 29, 34, 36, 37, 39, 43, 46, 48, 52, 53, 55, 57, 61, 62, 64, 66, 71, 75, 76, 79, 81, 82, 85, 87, 88, 89, 90, 91, 94, 100, 101, 102, 107, 108, 111, 113, 115, 116, 117, 118, 120, 129, 130, 131, 133, 134, 136, 138, 139, 144
Offset: 0
The prime indices of 84 are y = {1,1,2,4}, with even sum 8; but 8/2 = 4 is in y, so 84 is not in the sequence.
The terms together with their prime indices begin:
1: {}
3: {2}
7: {4}
10: {1,3}
13: {6}
16: {1,1,1,1}
19: {8}
21: {2,4}
22: {1,5}
27: {2,2,2}
28: {1,1,4}
29: {10}
34: {1,7}
36: {1,1,2,2}
A086543 lists numbers with at least one odd prime index, counted by
A366322.
A300063 ranks partitions of odd numbers.
A366319 ranks partitions of n not containing n/2.
A366321 ranks partitions of 2k that do not contain k.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],EvenQ[Total[prix[#]]]&&FreeQ[prix[#],Total[prix[#]]/2]&]
A366318
Heinz numbers of integer partitions that are of length 2 or begin with n/2, where n is the sum of all parts.
Original entry on oeis.org
4, 6, 9, 10, 12, 14, 15, 21, 22, 25, 26, 30, 33, 34, 35, 38, 39, 40, 46, 49, 51, 55, 57, 58, 62, 63, 65, 69, 70, 74, 77, 82, 84, 85, 86, 87, 91, 93, 94, 95, 106, 111, 112, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 154, 155, 158, 159
Offset: 1
The terms together with their prime indices begin:
4: {1,1} 38: {1,8} 77: {4,5}
6: {1,2} 39: {2,6} 82: {1,13}
9: {2,2} 40: {1,1,1,3} 84: {1,1,2,4}
10: {1,3} 46: {1,9} 85: {3,7}
12: {1,1,2} 49: {4,4} 86: {1,14}
14: {1,4} 51: {2,7} 87: {2,10}
15: {2,3} 55: {3,5} 91: {4,6}
21: {2,4} 57: {2,8} 93: {2,11}
22: {1,5} 58: {1,10} 94: {1,15}
25: {3,3} 62: {1,11} 95: {3,8}
26: {1,6} 63: {2,2,4} 106: {1,16}
30: {1,2,3} 65: {3,6} 111: {2,12}
33: {2,5} 69: {2,9} 112: {1,1,1,1,4}
34: {1,7} 70: {1,3,4} 115: {3,9}
35: {3,4} 74: {1,12} 118: {1,17}
The partitions with these Heinz numbers are counted by
A238628.
The complement of the second condition is
A366319, counted by
A086543.
A001222 counts prime factors with multiplicity.
A334201 adds up all prime indices except the greatest.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Length[prix[#]]==2||MemberQ[prix[#],Total[prix[#]]/2]&]
A366527
Number of integer partitions of 2n containing at least one even part.
Original entry on oeis.org
0, 1, 3, 7, 16, 32, 62, 113, 199, 339, 563, 913, 1453, 2271, 3496, 5308, 7959, 11798, 17309, 25151, 36225, 51748, 73359, 103254, 144363, 200568, 277007, 380437, 519715, 706412, 955587, 1286762, 1725186, 2303388, 3063159, 4058041, 5356431, 7045454, 9235841
Offset: 0
The a(1) = 1 through a(4) = 16 partitions:
(2) (4) (6) (8)
(22) (42) (44)
(211) (222) (62)
(321) (332)
(411) (422)
(2211) (431)
(21111) (521)
(611)
(2222)
(3221)
(4211)
(22211)
(32111)
(41111)
(221111)
(2111111)
This is the even bisection of
A047967.
A006477 counts partitions w/ at least one odd and even part, ranks
A366532.
-
Table[Length[Select[IntegerPartitions[2n],Or@@EvenQ/@#&]],{n,0,15}]
Showing 1-5 of 5 results.
Comments