A000346
a(n) = 2^(2*n+1) - binomial(2*n+1, n+1).
Original entry on oeis.org
1, 5, 22, 93, 386, 1586, 6476, 26333, 106762, 431910, 1744436, 7036530, 28354132, 114159428, 459312152, 1846943453, 7423131482, 29822170718, 119766321572, 480832549478, 1929894318332, 7744043540348, 31067656725032, 124613686513778, 499744650202436
Offset: 0
G.f. = 1 + 5*x + 22*x^2 + 93*x^3 + 386*x^4 + 1586*x^5 + 6476*x^6 + ...
- T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.
- D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- R. Bacher, On generating series of complementary plane trees arXiv:math/0409050 [math.CO], 2004.
- Vijay Balasubramanian, Javier M. Magan, and Qingyue Wu, A Tale of Two Hungarians: Tridiagonalizing Random Matrices, arXiv:2208.08452 [hep-th], 2022.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- E. A. Bender, E. R. Canfield and R. W. Robinson, The enumeration of maps on the torus and the projective plane, Canad. Math. Bull., 31 (1988), 257-271; see p. 270.
- D. E. Davenport, L. K. Pudwell, L. W. Shapiro and L. C. Woodson, The Boundary of Ordered Trees, 2014.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 185
- R. K. Guy, Letter to N. J. A. Sloane
- Toufik Mansour and José L. Ramirez, Enumerations of polyominoes determined by Fuss-Catalan words, Australas. J. Combin. 81 (3) (2021) 447-457, table 1.
- Mircea Merca, A Special Case of the Generalized Girard-Waring Formula, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7. - From _N. J. A. Sloane_, Nov 25 2012
- D. Merlini, R. Sprugnoli and M. C. Verri, Waiting patterns for a printer, FUN with algorithm'01, Isola d'Elba, 2001.
- D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344 (A_n for s=2).
- Vera Posch, Correlators in Matrix Models, Master Thesis, Uppsala Univ. (Sweden 2023). See p. 44.
- John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
- W. T. Tutte, On the enumeration of planar maps. Bull. Amer. Math. Soc. 74 1968 64-74.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Thy B13 (1972), 122-141 and 192-218 (eq. 5, b=1).
- N. J. A. Sloane, Notes
Even bisection of
A294175 (without the first two terms).
The following relate to compositions of 2n with alternating sum k.
- The k > 0 case is counted by
A000302.
- The k <= 0 case is counted by
A000302.
- The k != 0 case is counted by
A000346 (this sequence).
- The k < 0 case is counted by
A008549.
- The k >= 0 case is counted by
A114121.
A086543 counts partitions with nonzero alternating sum (bisection:
A182616).
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A345197 counts compositions by length and alternating sum.
Cf.
A000070,
A001791,
A007318,
A025047,
A027306,
A032443,
A053754,
A120452,
A163493,
A239830,
A344611,
A345921.
-
[2^(2*n+1) - Binomial(2*n+1,n+1): n in [0..30]]; // Vincenzo Librandi, Jun 07 2011
-
seq(2^(2*n+1)-binomial(2*n,n)*(2*n+1)/(n+1), n=0..12); # Emanuele Munarini, Mar 16 2011
-
Table[2^(2n+1)-Binomial[2n,n](2n+1)/(n+1),{n,0,20}] (* Emanuele Munarini, Mar 16 2011 *)
a[ n_] := If[ n<-4, 0, (4^(n + 1) - Binomial[2 n + 2, n + 1]) / 2]; (* Michael Somos, Jan 25 2014 *)
-
makelist(2^(2*n+1)-binomial(2*n,n)*(2*n+1)/(n+1),n,0,12); /* Emanuele Munarini, Mar 16 2011 */
-
{a(n) = if( n<-4, 0, n++; (2^(2*n) - binomial(2*n, n)) / 2)}; /* Michael Somos, Jan 25 2014 */
A027306
a(n) = 2^(n-1) + ((1 + (-1)^n)/4)*binomial(n, n/2).
Original entry on oeis.org
1, 1, 3, 4, 11, 16, 42, 64, 163, 256, 638, 1024, 2510, 4096, 9908, 16384, 39203, 65536, 155382, 262144, 616666, 1048576, 2449868, 4194304, 9740686, 16777216, 38754732, 67108864, 154276028, 268435456, 614429672, 1073741824, 2448023843
Offset: 0
From _Gus Wiseman_, Aug 20 2021: (Start)
The a(0) = 1 through a(4) = 11 binary numbers with a majority of 1-bits (Gottfried's comment) are:
1 11 101 1011 10011
110 1101 10101
111 1110 10110
1111 10111
11001
11010
11011
11100
11101
11110
11111
The version allowing an initial zero is A058622.
(End)
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.1.6)
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- F. Disanto, A. Frosini, and S. Rinaldi, Square involutions, J. Int. Seq. 14 (2011) # 11.3.5.
- Zachary Hamaker and Eric Marberg, Atoms for signed permutations, arXiv:1802.09805 [math.CO], 2018.
- Donatella Merlini and Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
a(n) = Sum{(k+1)T(n, m-k)}, 0<=k<=[ (n+1)/2 ], T given by
A008315.
The odd bisection appears to be
A032443.
-
List([0..35],n->Sum([0..Int(n/2)],k->Binomial(n,k))); # Muniru A Asiru, Nov 27 2018
-
a027306 n = a008949 n (n `div` 2) -- Reinhard Zumkeller, Nov 14 2014
-
[2^(n-1)+(1+(-1)^n)/4*Binomial(n, n div 2): n in [0..40]]; // Vincenzo Librandi, Jun 19 2016
-
a:= proc(n) add(binomial(n, j), j=0..n/2) end:
seq(a(n), n=0..32); # Zerinvary Lajos, Mar 29 2009
-
Table[Sum[Binomial[n, k], {k, 0, Floor[n/2]}], {n, 1, 35}]
(* Second program: *)
a[0] = a[1] = 1; a[2] = 3; a[n_] := a[n] = (2(n-1)(2a[n-2] + a[n-1]) - 8(n-2) a[n-3])/n; Array[a, 33, 0] (* Jean-François Alcover, Sep 04 2016 *)
-
a(n)=if(n<0,0,(2^n+if(n%2,0,binomial(n, n/2)))/2)
Better description from
Robert G. Wilson v, Aug 30 2000 and from Yong Kong (ykong(AT)curagen.com), Dec 28 2000
A058622
a(n) = 2^(n-1) - ((1+(-1)^n)/4)*binomial(n, n/2).
Original entry on oeis.org
0, 1, 1, 4, 5, 16, 22, 64, 93, 256, 386, 1024, 1586, 4096, 6476, 16384, 26333, 65536, 106762, 262144, 431910, 1048576, 1744436, 4194304, 7036530, 16777216, 28354132, 67108864, 114159428, 268435456, 459312152, 1073741824, 1846943453
Offset: 0
Yong Kong (ykong(AT)curagen.com), Dec 29 2000
G.f. = x + x^2 + 4*x^3 + 5*x^4 + 16*x^5 + 22*x^6 + 64*x^7 + 93*x^8 + ...
From _Gus Wiseman_, Jul 19 2021: (Start)
The a(1) = 1 through a(5) = 16 compositions with nonzero alternating sum:
(1) (2) (3) (4) (5)
(1,2) (1,3) (1,4)
(2,1) (3,1) (2,3)
(1,1,1) (1,1,2) (3,2)
(2,1,1) (4,1)
(1,1,3)
(1,2,2)
(1,3,1)
(2,1,2)
(2,2,1)
(3,1,1)
(1,1,1,2)
(1,1,2,1)
(1,2,1,1)
(2,1,1,1)
(1,1,1,1,1)
(End)
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.1.7)
The following relate to compositions with nonzero alternating sum:
- The version for alternating sum > 0 is
A027306.
- The version for alternating sum < 0 is
A294175.
- These compositions are ranked by
A345921.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A345197 counts compositions by length and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
Cf.
A000070,
A000097,
A007318,
A008549,
A034871,
A114121,
A120452,
A163493,
A210736,
A239830,
A344611.
-
[(2^n -(1+(-1)^n)*Binomial(n, Floor(n/2))/2)/2: n in [0..40]]; // G. C. Greubel, Aug 08 2022
-
Table[Sum[Binomial[n, Floor[n/2 + i]], {i, 1, n}], {n, 0, 32}] (* Geoffrey Critzer, Jul 16 2009 *)
a[n_] := If[n < 0, 0, (2^n - Boole[EvenQ @ n] Binomial[n, Quotient[n, 2]])/2]; (* Michael Somos, Nov 22 2014 *)
a[n_] := If[n < 0, 0, n! SeriesCoefficient[(Exp[2 x] - BesselI[0, 2 x])/2, {x, 0, n}]]; (* Michael Somos, Nov 22 2014 *)
Table[2^(n - 1) - (1 + (-1)^n) Binomial[n, n/2]/4, {n, 0, 40}] (* Eric W. Weisstein, Mar 21 2018 *)
CoefficientList[Series[2 x/((1-2x)(1 + 2x + Sqrt[(1+2x)(1-2x)])), {x, 0, 40}], x] (* Eric W. Weisstein, Mar 21 2018 *)
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],ats[#]!=0&]],{n,0,15}] (* Gus Wiseman, Jul 19 2021 *)
-
a(n) = 2^(n-1) - ((1+(-1)^n)/4)*binomial(n, n\2); \\ Michel Marcus, Dec 30 2015
-
my(x='x+O('x^100)); concat(0, Vec(2*x/((1-2*x)*(1+2*x+((1+2*x)*(1-2*x))^(1/2))))) \\ Altug Alkan, Dec 30 2015
-
from math import comb
def A058622(n): return (1<>1)>>1) if n else 0 # Chai Wah Wu, Aug 25 2025
-
[(2^n - binomial(n, n//2)*((n+1)%2))/2 for n in (0..40)] # G. C. Greubel, Aug 08 2022
A119620
Number of partitions of floor(3n/2) into n parts each from {1,2,...,n}.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 15, 15, 22, 22, 30, 30, 42, 42, 56, 56, 77, 77, 101, 101, 135, 135, 176, 176, 231, 231, 297, 297, 385, 385, 490, 490, 627, 627, 792, 792, 1002, 1002, 1255, 1255, 1575, 1575, 1958, 1958, 2436, 2436, 3010, 3010, 3718, 3718
Offset: 0
For n=8, floor(3*n/2) is 12 and there are five partitions of 12 into 8 parts each in the range 1-8 inclusive, namely: {5,1,1,1,1,1,1,1}, {4,2,1,1,1,1,1,1}, {3,3,1,1,1,1,1,1}, {3,2,2,1,1,1,1,1} and {2,2,2,2,1,1,1,1}. Thus a(8)=5.
From _Joerg Arndt_, Apr 22 2013: (Start)
a(8) = a(9) = 5, counting the following partitions where all parts (except for possibly the first part) are even:
01: [ 2 2 2 2 ]
02: [ 4 2 2 ]
03: [ 4 4 ]
04: [ 6 2 ]
05: [ 8 ]
and
01: [ 3 2 2 2 ]
02: [ 5 2 2 ]
03: [ 5 4 ]
04: [ 7 2 ]
05: [ 9 ]
(End)
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 5*x^8 + 5*x^9 + 7*x^10 + ...
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A325534 counts separable partitions.
A325535 counts inseparable partitions.
-
# Using the function EULER from Transforms (see link at the bottom of the page).
[1, op(EULER([1,0,seq(irem(n,2),n=2..55)]))]; # Peter Luschny, Aug 19 2020
-
(* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) f[n_] := f[n] = Length@ Select[ Partitions[ Floor[3n/2], n], Length@# == n &]; Table[ If[n > 1, f[2Floor[n/2]], f[n]], {n, 57}] (* Robert G. Wilson v, Jun 09 2006 *)
Table[ PartitionsP[ Floor[n/2]], {n, 57}] (* Robert G. Wilson v, Jun 09 2006 *)
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Ceiling[n/2]]], {n, 50}] (* Clark Kimberling, Feb 28 2014 *)
a[ n_] := SeriesCoefficient[ (1 + x) / QPochhammer[x^2], {x, 0, n}]; (* Michael Somos, Mar 01 2014 *)
-
a(n)=numbpart(n\2); \\ Joerg Arndt, Apr 22 2013
A238628
Number of partitions p of n such that n - max(p) is a part of p.
Original entry on oeis.org
0, 1, 1, 3, 2, 5, 3, 8, 4, 11, 5, 16, 6, 21, 7, 29, 8, 38, 9, 51, 10, 66, 11, 88, 12, 113, 13, 148, 14, 190, 15, 246, 16, 313, 17, 402, 18, 508, 19, 646, 20, 812, 21, 1023, 22, 1277, 23, 1598, 24, 1982, 25, 2461, 26, 3036, 27, 3745, 28, 4593, 29, 5633
Offset: 1
a(6) counts these partitions: 51, 42, 33, 321, 3111.
The complement is counted by
A365825.
These partitions are ranked by
A366318.
A182616 counts partitions of 2n that do not contain n, strict
A365828.
-
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, n - Max[p]]], {n, 50}]
-
a(n) = my(res = floor(n/2)); if(!bitand(n, 1), res+=(numbpart(n/2)-1)); res
-
from sympy.utilities.iterables import partitions
def A238628(n): return sum(1 for p in partitions(n) if n-max(p,default=0) in p) # Chai Wah Wu, Sep 21 2023
A367094
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of integer partitions of 2n whose number of submultisets summing to n is k.
Original entry on oeis.org
0, 1, 1, 1, 2, 2, 1, 5, 3, 3, 8, 4, 9, 1, 17, 6, 16, 1, 2, 24, 7, 33, 4, 9, 46, 11, 52, 3, 18, 1, 4, 64, 12, 91, 6, 38, 3, 15, 1, 1, 107, 17, 138, 9, 68, 2, 28, 2, 12, 0, 2, 147, 19, 219, 12, 117, 6, 56, 3, 34, 2, 9, 0, 3
Offset: 0
The partition (3,2,2,1) has two submultisets summing to 4, namely {2,2} and {1,3}, so it is counted under T(4,2).
The partition (2,2,1,1,1,1) has three submultisets summing to 4, namely {1,1,1,1}, {1,1,2}, and {2,2}, so it is counted under T(4,3).
Triangle begins:
0 1
1 1
2 2 1
5 3 3
8 4 9 1
17 6 16 1 2
24 7 33 4 9
46 11 52 3 18 1 4
64 12 91 6 38 3 15 1 1
107 17 138 9 68 2 28 2 12 0 2
147 19 219 12 117 6 56 3 34 2 9 0 3
Row n = 4 counts the following partitions:
(8) (44) (431) (221111)
(71) (3311) (422)
(62) (2222) (4211)
(611) (11111111) (41111)
(53) (3221)
(521) (32111)
(5111) (311111)
(332) (22211)
(2111111)
The corresponding rank statistic is
A357879 (without empty rows).
A182616 counts partitions of 2n with at least one odd part, ranks
A366530.
A365543 counts partitions of n with a submultiset summing to k.
-
t=Table[Length[Select[IntegerPartitions[2n], Count[Total/@Union[Subsets[#]],n]==k&]], {n,0,5}, {k,0,1+PartitionsP[n]}];
Table[NestWhile[Most,t[[i]],Last[#]==0&], {i,Length[t]}]
A174713
Triangle read by rows, A173305 (A000009 shifted down twice) * A174712 (diagonalized variant of A000041).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 2, 4, 2, 2, 3, 5, 3, 4, 3, 6, 4, 4, 3, 5, 8, 5, 6, 6, 5, 10, 6, 8, 6, 5, 7, 12, 8, 10, 9, 10, 7, 15, 10, 12, 12, 10, 7, 11, 18, 12, 16, 15, 15, 14, 11, 22, 15, 20, 18, 20, 14, 11, 15
Offset: 0
First few rows of the triangle =
1;
1;
1, 1;
2, 1;
2, 1, 2;
3, 2, 2;
4, 2, 2, 3;
5, 3, 4, 3;
6, 4, 4, 3, 5;
8, 5, 6, 6, 5;
10, 6, 8, 6, 5, 7;
12, 8, 10, 9, 10, 7;
15, 10, 12, 12, 10, 7, 11;
18, 12, 16, 15, 15, 14, 11;
22, 15, 20, 18, 20, 14, 11, 15;
...
From _Gus Wiseman_, Oct 23 2023: (Start)
Row n = 9 counts the following partitions:
(9) (72) (54) (63) (81)
(711) (5211) (522) (6111) (621)
(531) (3321) (4311) (432) (441)
(51111) (321111) (411111) (42111) (4221)
(333) (21111111) (32211) (3222) (22221)
(33111) (2211111) (222111)
(3111111)
(111111111)
(End)
A239261 counts partitions with (sum of odd parts) = (sum of even parts).
-
Table[Length[Select[IntegerPartitions[n],Total[Select[#,EvenQ]]==k&]],{n,0,15},{k,0,n,2}] (* Gus Wiseman, Oct 23 2023 *)
A347449
Number of integer partitions of n with reverse-alternating product > 1.
Original entry on oeis.org
0, 0, 1, 1, 2, 2, 5, 5, 10, 11, 20, 22, 37, 41, 66, 75, 113, 129, 190, 218, 310, 358, 497, 576, 782, 908, 1212, 1411, 1851, 2156, 2793, 3255, 4163, 4853, 6142, 7159, 8972, 10451, 12989, 15123, 18646, 21689, 26561, 30867, 37556, 43599, 52743, 61161, 73593
Offset: 0
The a(2) = 1 through a(9) = 11 partitions:
(2) (3) (4) (5) (6) (7) (8) (9)
(211) (311) (222) (322) (332) (333)
(321) (421) (422) (432)
(411) (511) (431) (522)
(21111) (31111) (521) (531)
(611) (621)
(22211) (711)
(32111) (32211)
(41111) (42111)
(2111111) (51111)
(3111111)
The strict case is
A067659, except that a(0) = a(1) = 0.
The case of >= 1 instead of > 1 is
A344607.
The opposite version is
A344608, also the non-reverse even-length case.
Allowing any integer reverse-alternating product gives
A347445.
Allowing any integer alternating product gives
A347446.
Reverse version of
A347448; also the odd-length case.
The Heinz numbers of these partitions are the complement of
A347450.
The multiplicative version (factorizations) is
A347705.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A100824 counts partitions of n with alternating sum <= 1.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A347462 counts possible reverse-alternating products of partitions.
Cf.
A000070,
A008549,
A086543,
A182616,
A236913,
A325534,
A325535,
A344611,
A347442,
A347444,
A347447,
A347453,
A347461,
A347465.
-
altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
Table[Length[Select[IntegerPartitions[n],altprod[Reverse[#]]>1&]],{n,0,30}]
A100824
Number of partitions of n with at most one odd part.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 3, 7, 5, 12, 7, 19, 11, 30, 15, 45, 22, 67, 30, 97, 42, 139, 56, 195, 77, 272, 101, 373, 135, 508, 176, 684, 231, 915, 297, 1212, 385, 1597, 490, 2087, 627, 2714, 792, 3506, 1002, 4508, 1255, 5763, 1575, 7338, 1958, 9296, 2436, 11732, 3010, 14742
Offset: 0
From _Gus Wiseman_, Jan 21 2022: (Start)
The a(1) = 1 through a(9) = 12 partitions with at most one odd part:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(21) (22) (32) (42) (43) (44) (54)
(41) (222) (52) (62) (63)
(221) (61) (422) (72)
(322) (2222) (81)
(421) (432)
(2221) (441)
(522)
(621)
(3222)
(4221)
(22221)
(End)
The case of alternating sum 0 (equality) is
A000070.
A multiplicative version is
A339846.
A058695 = partitions of odd numbers.
A277103 = partitions with the same number of odd parts as their conjugate.
Cf.
A000984,
A001791,
A008549,
A097805,
A119620,
A182616,
A236559,
A236913,
A236914,
A304620,
A344607,
A345958,
A347443.
-
seq(coeff(convert(series((1+x/(1-x^2))/mul(1-x^(2*i),i=1..100),x,100),polynom),x,n),n=0..60); (C. Ronaldo)
-
nmax = 50; CoefficientList[Series[(1+x/(1-x^2)) * Product[1/(1-x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)
Table[Length[Select[IntegerPartitions[n],Count[#,?OddQ]<=1&]],{n,0,30}] (* _Gus Wiseman, Jan 21 2022 *)
-
a(n) = if(n%2==0, numbpart(n/2), sum(i=1, (n+1)\2, numbpart((n-2*i+1)\2))) \\ David A. Corneth, Jan 23 2022
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005
A365828
Number of strict integer partitions of 2n not containing n.
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 12, 18, 27, 39, 55, 78, 108, 148, 201, 270, 359, 475, 623, 811, 1050, 1351, 1728, 2201, 2789, 3517, 4418, 5527, 6887, 8553, 10585, 13055, 16055, 19685, 24065, 29343, 35685, 43287, 52387, 63253, 76200, 91605, 109897, 131575, 157231, 187539
Offset: 0
The a(0) = 1 through a(6) = 12 strict partitions:
() (2) (4) (6) (8) (10) (12)
(3,1) (4,2) (5,3) (6,4) (7,5)
(5,1) (6,2) (7,3) (8,4)
(7,1) (8,2) (9,3)
(5,2,1) (9,1) (10,2)
(6,3,1) (11,1)
(7,2,1) (5,4,3)
(4,3,2,1) (7,3,2)
(7,4,1)
(8,3,1)
(9,2,1)
(5,4,2,1)
The complement is counted by
A111133.
A000009 counts strict integer partitions.
A046663 counts partitions with no submultiset summing to k, strict
A365663.
-
Table[Length[Select[IntegerPartitions[2n],UnsameQ@@#&&FreeQ[#,n]&]],{n,0,30}]
Showing 1-10 of 18 results.
Comments