A349157
Heinz numbers of integer partitions where the number of even parts is equal to the number of odd conjugate parts.
Original entry on oeis.org
1, 4, 6, 15, 16, 21, 24, 25, 35, 60, 64, 77, 84, 90, 91, 96, 100, 121, 126, 140, 143, 150, 210, 221, 240, 247, 256, 289, 297, 308, 323, 336, 351, 360, 364, 375, 384, 400, 437, 462, 484, 490, 495, 504, 525, 529, 546, 551, 560, 572, 585, 600, 625, 667, 686, 726
Offset: 1
The terms and their prime indices begin:
1: ()
4: (1,1)
6: (2,1)
15: (3,2)
16: (1,1,1,1)
21: (4,2)
24: (2,1,1,1)
25: (3,3)
35: (4,3)
60: (3,2,1,1)
64: (1,1,1,1,1,1)
77: (5,4)
84: (4,2,1,1)
90: (3,2,2,1)
91: (6,4)
96: (2,1,1,1,1,1)
These partitions are counted by
A277579.
A100824 counts partitions with at most one odd part, ranked by
A349150.
A122111 represents conjugation using Heinz numbers.
A316524 gives the alternating sum of prime indices (reverse:
A344616).
Cf.
A000700,
A000712,
A035363,
A066207,
A066208,
A097613,
A215366,
A239241,
A240009,
A241638,
A316523,
A325700,
A340604.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Select[Range[100],Count[primeMS[#],?EvenQ]==Count[conj[primeMS[#]],?OddQ]&]
A347443
Number of integer partitions of n with reverse-alternating product <= 1.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 6, 10, 12, 19, 22, 34, 40, 60, 69, 101, 118, 168, 195, 272, 317, 434, 505, 679, 793, 1050, 1224, 1599, 1867, 2409, 2811, 3587, 4186, 5290, 6168, 7724, 9005, 11186, 13026, 16062, 18692, 22894, 26613, 32394, 37619, 45535, 52815, 63593, 73680
Offset: 0
The a(1) = 1 through a(8) = 12 partitions:
(1) (11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (221) (51) (61) (62)
(2111) (2211) (331) (71)
(11111) (3111) (2221) (2222)
(111111) (3211) (3221)
(4111) (3311)
(22111) (4211)
(211111) (5111)
(1111111) (221111)
(311111)
(11111111)
The odd-length case is
A035363 (shifted).
The opposite version (>= instead of <=) is
A344607.
The case of < 1 instead of <= 1 is
A344608.
The multiplicative version (factorizations) is
A347438, non-reverse
A339846.
Allowing any integer reverse-alternating product gives
A347445.
The complement (> 1 instead of <= 1) is counted by
A347449.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A058622 counts compositions with alternating sum <= 0 (
A294175 for < 0).
A100824 counts partitions with alternating sum <= 1.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A347461 counts possible alternating products of partitions.
A347462 counts possible reverse-alternating products of partitions.
Cf.
A000070,
A038548,
A086543,
A116406,
A325534,
A325535,
A344611,
A344654,
A344740,
A347440,
A347442,
A347446,
A347448.
-
altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
Table[Length[Select[IntegerPartitions[n],altprod[Reverse[#]]<=1&]],{n,0,30}]
A347448
Number of integer partitions of n with alternating product > 1.
Original entry on oeis.org
0, 0, 1, 2, 3, 5, 8, 12, 17, 25, 35, 49, 66, 90, 120, 161, 209, 275, 355, 460, 585, 750, 946, 1199, 1498, 1881, 2335, 2909, 3583, 4430, 5428, 6666, 8118, 9912, 12013, 14586, 17592, 21252, 25525, 30695, 36711, 43956, 52382, 62469, 74173, 88132, 104303, 123499
Offset: 0
The a(2) = 1 through a(7) = 12 partitions:
(2) (3) (4) (5) (6) (7)
(21) (31) (32) (42) (43)
(211) (41) (51) (52)
(311) (222) (61)
(2111) (321) (322)
(411) (421)
(3111) (511)
(21111) (2221)
(3211)
(4111)
(31111)
(211111)
The strict case is
A000009, except that a(0) = a(1) = 0.
Allowing any integer reverse-alternating product gives
A347445.
Allowing any integer alternating product gives
A347446.
The reverse version is
A347449, also the odd-length case.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A347461 counts possible alternating products of partitions.
Cf.
A000070,
A086543,
A100824,
A236913,
A325534,
A325535,
A339846,
A344654,
A345196,
A347440,
A347444,
A347462.
-
a:= n-> (p-> p(n)-p(iquo(n, 2)))(combinat[numbpart]):
seq(a(n), n=0..63); # Alois P. Heinz, Oct 04 2021
-
altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
Table[Length[Select[IntegerPartitions[n],altprod[#]>1&]],{n,0,30}]
A349158
Heinz numbers of integer partitions with exactly one odd part.
Original entry on oeis.org
2, 5, 6, 11, 14, 15, 17, 18, 23, 26, 31, 33, 35, 38, 41, 42, 45, 47, 51, 54, 58, 59, 65, 67, 69, 73, 74, 77, 78, 83, 86, 93, 95, 97, 98, 99, 103, 105, 106, 109, 114, 119, 122, 123, 126, 127, 135, 137, 141, 142, 143, 145, 149, 153, 157, 158, 161, 162, 167, 174
Offset: 1
The terms and corresponding partitions begin:
2: (1) 42: (4,2,1) 86: (14,1)
5: (3) 45: (3,2,2) 93: (11,2)
6: (2,1) 47: (15) 95: (8,3)
11: (5) 51: (7,2) 97: (25)
14: (4,1) 54: (2,2,2,1) 98: (4,4,1)
15: (3,2) 58: (10,1) 99: (5,2,2)
17: (7) 59: (17) 103: (27)
18: (2,2,1) 65: (6,3) 105: (4,3,2)
23: (9) 67: (19) 106: (16,1)
26: (6,1) 69: (9,2) 109: (29)
31: (11) 73: (21) 114: (8,2,1)
33: (5,2) 74: (12,1) 119: (7,4)
35: (4,3) 77: (5,4) 122: (18,1)
38: (8,1) 78: (6,2,1) 123: (13,2)
41: (13) 83: (23) 126: (4,2,2,1)
These partitions are counted by
A000070 up to 0's.
These are the positions of 1's in
A257991.
The even prime indices are counted by
A257992.
The conjugate partitions are ranked by
A345958.
A122111 is a representation of partition conjugation.
A316524 gives the alternating sum of prime indices (reverse:
A344616).
A325698 ranks partitions with as many even as odd parts, counted by
A045931.
A349157 ranks partitions with as many even parts as odd conjugate parts.
Cf.
A000700,
A001222,
A027187,
A027193,
A028260,
A031368 (primes with odd index),
A035363,
A215366,
A277579,
A300063,
A349151.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Count[primeMS[#],_?OddQ]==1&]
A347449
Number of integer partitions of n with reverse-alternating product > 1.
Original entry on oeis.org
0, 0, 1, 1, 2, 2, 5, 5, 10, 11, 20, 22, 37, 41, 66, 75, 113, 129, 190, 218, 310, 358, 497, 576, 782, 908, 1212, 1411, 1851, 2156, 2793, 3255, 4163, 4853, 6142, 7159, 8972, 10451, 12989, 15123, 18646, 21689, 26561, 30867, 37556, 43599, 52743, 61161, 73593
Offset: 0
The a(2) = 1 through a(9) = 11 partitions:
(2) (3) (4) (5) (6) (7) (8) (9)
(211) (311) (222) (322) (332) (333)
(321) (421) (422) (432)
(411) (511) (431) (522)
(21111) (31111) (521) (531)
(611) (621)
(22211) (711)
(32111) (32211)
(41111) (42111)
(2111111) (51111)
(3111111)
The strict case is
A067659, except that a(0) = a(1) = 0.
The case of >= 1 instead of > 1 is
A344607.
The opposite version is
A344608, also the non-reverse even-length case.
Allowing any integer reverse-alternating product gives
A347445.
Allowing any integer alternating product gives
A347446.
Reverse version of
A347448; also the odd-length case.
The Heinz numbers of these partitions are the complement of
A347450.
The multiplicative version (factorizations) is
A347705.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A100824 counts partitions of n with alternating sum <= 1.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A347462 counts possible reverse-alternating products of partitions.
Cf.
A000070,
A008549,
A086543,
A182616,
A236913,
A325534,
A325535,
A344611,
A347442,
A347444,
A347447,
A347453,
A347461,
A347465.
-
altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
Table[Length[Select[IntegerPartitions[n],altprod[Reverse[#]]>1&]],{n,0,30}]
A349150
Heinz numbers of integer partitions with at most one odd part.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 9, 11, 13, 14, 15, 17, 18, 19, 21, 23, 26, 27, 29, 31, 33, 35, 37, 38, 39, 41, 42, 43, 45, 47, 49, 51, 53, 54, 57, 58, 59, 61, 63, 65, 67, 69, 71, 73, 74, 77, 78, 79, 81, 83, 86, 87, 89, 91, 93, 95, 97, 98, 99, 101, 103, 105, 106, 107, 109
Offset: 1
The terms and their prime indices begin:
1: {} 23: {9} 49: {4,4}
2: {1} 26: {1,6} 51: {2,7}
3: {2} 27: {2,2,2} 53: {16}
5: {3} 29: {10} 54: {1,2,2,2}
6: {1,2} 31: {11} 57: {2,8}
7: {4} 33: {2,5} 58: {1,10}
9: {2,2} 35: {3,4} 59: {17}
11: {5} 37: {12} 61: {18}
13: {6} 38: {1,8} 63: {2,2,4}
14: {1,4} 39: {2,6} 65: {3,6}
15: {2,3} 41: {13} 67: {19}
17: {7} 42: {1,2,4} 69: {2,9}
18: {1,2,2} 43: {14} 71: {20}
19: {8} 45: {2,2,3} 73: {21}
21: {2,4} 47: {15} 74: {1,12}
These are the positions of 0's and 1's in
A257991.
The conjugate partitions are ranked by
A349151.
A122111 is a representation of partition conjugation.
A300063 ranks partitions of odd numbers, counted by
A058695 up to 0's.
A316524 gives the alternating sum of prime indices (reverse:
A344616).
A325698 ranks partitions with as many even as odd parts, counted by
A045931.
A345958 ranks partitions with alternating sum 1.
A349157 ranks partitions with as many even parts as odd conjugate parts.
Cf.
A000290,
A000700,
A001222,
A027187,
A027193,
A028260,
A035363,
A047993,
A215366,
A257992,
A277579,
A326841.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Count[Reverse[primeMS[#]],_?OddQ]<=1&]
A349151
Heinz numbers of integer partitions with alternating sum <= 1.
Original entry on oeis.org
1, 2, 4, 6, 8, 9, 15, 16, 18, 24, 25, 32, 35, 36, 49, 50, 54, 60, 64, 72, 77, 81, 96, 98, 100, 121, 128, 135, 140, 143, 144, 150, 162, 169, 196, 200, 216, 221, 225, 240, 242, 256, 288, 289, 294, 308, 315, 323, 324, 338, 361, 375, 384, 392, 400, 437, 441, 450
Offset: 1
The terms and their prime indices begin:
1: {}
2: {1}
4: {1,1}
6: {1,2}
8: {1,1,1}
9: {2,2}
15: {2,3}
16: {1,1,1,1}
18: {1,2,2}
24: {1,1,1,2}
25: {3,3}
32: {1,1,1,1,1}
35: {3,4}
36: {1,1,2,2}
49: {4,4}
The case of alternating sum 0 is
A000290.
These partitions are counted by
A100824.
These are the positions of 0's and 1's in
A344616.
The case of alternating sum 1 is
A345958.
The conjugate partitions are ranked by
A349150.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A122111 is a representation of partition conjugation.
A316524 gives the alternating sum of prime indices.
A344610 counts partitions by sum and positive reverse-alternating sum.
A349157 ranks partitions with as many even parts as odd conjugate parts.
Cf.
A000070,
A000700,
A001222,
A027187,
A027193,
A215366,
A277103,
A277579,
A326841,
A349149,
A349158.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
Select[Range[100],ats[Reverse[primeMS[#]]]<=1&]
A349149
Number of even-length integer partitions of n with at most one odd part in the conjugate partition.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 3, 4, 5, 7, 7, 12, 11, 19, 15, 30, 22, 45, 30, 67, 42, 97, 56, 139, 77, 195, 101, 272, 135, 373, 176, 508, 231, 684, 297, 915, 385, 1212, 490, 1597, 627, 2087, 792, 2714, 1002, 3506, 1255, 4508, 1575, 5763, 1958, 7338, 2436, 9296, 3010, 11732
Offset: 0
The a(2) = 1 through a(9) = 7 partitions:
11 21 22 32 33 43 44 54
1111 2111 2211 2221 2222 3222
111111 3211 3311 3321
211111 221111 4311
11111111 222111
321111
21111111
The case of 0 odd conjugate parts is
A000041 up to 0's, ranked by
A000290.
The case of 1 odd conjugate part is
A000070 up to 0's.
A045931 counts partitions with as many even as odd parts, ranked by
A325698.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A122111 is a representation of partition conjugation.
A277103 counts partitions with the same alternating sum as their conjugate.
A277579 counts partitions with as many even parts as odd conjugate parts.
A325039 counts partitions with the same product as their conjugate.
A344610 counts partitions by sum and positive reverse-alternating sum.
A345196 counts partitions with the same rev-alt sum as their conjugate.
Cf.
A000097,
A000700,
A001700,
A027187,
A027193,
A108711,
A236559,
A236913,
A325534,
A344607,
A344651.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&Count[conj[#],_?OddQ]<=1&]],{n,0,30}]
A114312
Number of partitions of n with at most 3 odd parts.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 8, 12, 14, 22, 24, 38, 39, 63, 62, 102, 95, 159, 144, 244, 212, 366, 309, 540, 442, 784, 626, 1125, 873, 1591, 1209, 2229, 1653, 3089, 2245, 4243, 3019, 5776, 4035, 7806, 5348, 10466, 7051, 13944, 9229, 18454, 12022, 24282, 15565, 31766, 20063
Offset: 0
a(6) = 8 because we have 6, 51, 42, 411, 33, 321, 222 and 2211 (3111, 21111 and 111111 do not qualify).
-
G:=(1+x/(1-x^2)+x^2/(1-x^2)/(1-x^4)+x^3/(1-x^2)/(1-x^4)/(1-x^6))/Product(1-x^(2*i), i=1..100): Gser:=series(G, x, 70): seq(coeff(Gser, x, n), n=0..60);
-
nmax = 50; CoefficientList[Series[(1+x/(1-x^2)+x^2/(1-x^2)/(1-x^4)+x^3/(1-x^2)/(1-x^4)/(1-x^6)) * Product[1/(1-x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)
Showing 1-9 of 9 results.
Comments