cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A028983 Numbers whose sum of divisors is even.

Original entry on oeis.org

3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82
Offset: 1

Views

Author

Keywords

Comments

The even terms of this sequence are the even terms appearing in A178910. [Edited by M. F. Hasler, Oct 02 2014]
A071324(a(n)) is even. - Reinhard Zumkeller, Jul 03 2008
Sigma(a(n)) = A000203(a(n)) = A152678(n). - Jaroslav Krizek, Oct 06 2009
A083207 is a subsequence. - Reinhard Zumkeller, Jul 19 2010
Numbers k such that the number of odd divisors of k (A001227) is even. - Omar E. Pol, Apr 04 2016
Numbers k such that the sum of odd divisors of k (A000593) is even. - Omar E. Pol, Jul 05 2016
Numbers with a squarefree part greater than 2. - Peter Munn, Apr 26 2020
Equivalently, numbers whose odd part is nonsquare. Compare with the numbers whose square part is even (i.e., nonodd): these are the positive multiples of 4, A008586\{0}, and A225546 provides a self-inverse bijection between the two sets. - Peter Munn, Jul 19 2020
Also numbers whose reversed prime indices have alternating product > 1, where we define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). Also Heinz numbers of the partitions counted by A347448. - Gus Wiseman, Oct 29 2021
Numbers whose number of middle divisors is not odd (cf. A067742). - Omar E. Pol, Aug 02 2022

Crossrefs

The complement is A028982 = A000290 U A001105.
Subsequences: A083207, A091067, A145204\{0}, A225838, A225858.
Cf. A334748 (a permutation).
Related to A008586 via A225546.
Ranks the partitions counted by A347448, complement A119620.

Programs

  • Mathematica
    Select[Range[82],EvenQ[DivisorSigma[1,#]]&] (* Jayanta Basu, Jun 05 2013 *)
  • PARI
    is(n)=!issquare(n)&&!issquare(n/2) \\ Charles R Greathouse IV, Jan 11 2013
    
  • Python
    from math import isqrt
    def A028983(n):
        def f(x): return n-1+isqrt(x)+isqrt(x>>1)
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 22 2024

Formula

a(n) ~ n. - Charles R Greathouse IV, Jan 11 2013
a(n) = n + (1 + sqrt(2)/2)*sqrt(n) + O(1). - Charles R Greathouse IV, Sep 01 2015
A007913(a(n)) > 2. - Peter Munn, May 05 2020

A347446 Number of integer partitions of n with integer alternating product.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 12, 18, 22, 31, 37, 54, 62, 84, 100, 134, 157, 207, 241, 314, 363, 463, 537, 685, 785, 985, 1138, 1410, 1616, 1996, 2286, 2801, 3201, 3885, 4434, 5363, 6098, 7323, 8329, 9954, 11293, 13430, 15214, 18022, 20383, 24017, 27141, 31893, 35960
Offset: 0

Views

Author

Gus Wiseman, Sep 15 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (41)     (33)      (61)
             (111)  (31)    (221)    (42)      (322)
                    (211)   (311)    (51)      (331)
                    (1111)  (2111)   (222)     (421)
                            (11111)  (411)     (511)
                                     (2211)    (2221)
                                     (3111)    (4111)
                                     (21111)   (22111)
                                     (111111)  (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

Allowing any reverse-alternating product >= 1 gives A344607.
Allowing any alternating product <= 1 gives A119620, reverse A347443.
Allowing any reverse-alternating product < 1 gives A344608.
The multiplicative version (factorizations) is A347437, reverse A347442.
The odd-length case is A347444, ranked by A347453.
The reverse version is A347445, ranked by A347454.
Allowing any alternating product > 1 gives A347448, reverse A347449.
Ranked by A347457.
The even-length case is A347704.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A347461 counts possible alternating products of partitions.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],IntegerQ[altprod[#]]&]],{n,0,30}]

A347456 Number of factorizations of n with alternating product >= 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 2, 2, 1, 2, 1, 4, 1, 1, 1, 6, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 6, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 8, 1, 2, 1, 2, 1, 2, 1, 8, 1, 1, 2, 2, 1, 2, 1, 6, 4, 1, 1, 5, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
Also the number of factorizations of n with alternating sum >= 0.

Examples

			The a(n) factorizations for n = 4, 16, 24, 36, 60, 64, 96:
  4     16        24      36        60       64            96
  2*2   4*4       2*2*6   6*6       2*5*6    8*8           2*6*8
        2*2*4     2*3*4   2*2*9     3*4*5    2*4*8         3*4*8
        2*2*2*2           2*3*6     2*2*15   4*4*4         4*4*6
                          3*3*4     2*3*10   2*2*16        2*2*24
                          2*2*3*3            2*2*4*4       2*3*16
                                             2*2*2*2*4     2*4*12
                                             2*2*2*2*2*2   2*2*2*2*6
                                                           2*2*2*3*4
		

Crossrefs

The case of partitions is A000041, reverse A344607.
The reverse version is A001055, strict A347705.
Positions of 3's appear to be A065036.
Positions of 1's are 1 and A167171.
The opposite version (<= instead of >=) is A339846.
The strict version (> instead of >=) is A339890, also the odd-length case.
Allowing any integer alternating product gives A347437.
The case of alternating product 1 is A347438, also the even-length case.
Allowing any integer reciprocal alternating product gives A347439.
The complement (< instead of >=) is A347440.
Allowing any integer reverse-alternating product gives A347442.
A038548 counts factorizations with a wiggly permutation.
A045778 counts strict factorizations.
A074206 counts ordered factorizations.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A119620 counts partitions with alternating product 1.
A347447 counts strict factorizations with alternating product > 1.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[facs[n],altprod[#]>=1&]],{n,100}]

Formula

a(n) = A347438(n) + A347440(n).

A347457 Heinz numbers of integer partitions with integer alternating product.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 71, 72, 73, 74, 75, 76, 78
Offset: 1

Views

Author

Gus Wiseman, Sep 26 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
Also numbers whose multiset of prime indices has integer reverse-alternating product.

Examples

			The prime indices of 525 are {2,3,3,4}, with reverse-alternating product 2, so 525 is in the sequence
The prime indices of 135 are {2,2,2,3}, with reverse-alternating product 3/2, so 135 is not in the sequence.
		

Crossrefs

The reciprocal version is A028982.
Allowing any alternating product > 1 gives A028983, reverse A347465.
Factorizations of this type are counted by A347437.
These partitions are counted by A347446.
The reverse reciprocal version A347451.
The odd-length case is A347453.
The reverse version is A347454.
The complement is A347455.
A056239 adds up prime indices, row sums of A112798.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A335433 lists numbers whose prime indices are separable, complement A335448.
A347461 counts possible alternating products of partitions, reverse A347462.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Select[Range[100],IntegerQ[altprod[Reverse[primeMS[#]]]]&]

A347445 Number of integer partitions of n with integer reverse-alternating product.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 20, 24, 32, 40, 50, 62, 77, 99, 115, 151, 170, 224, 251, 331, 360, 481, 517, 690, 728, 980, 1020, 1379, 1420, 1918, 1962, 2643, 2677, 3630, 3651, 4920, 4926, 6659, 6625, 8931, 8853, 11905, 11781, 15805, 15562, 20872, 20518
Offset: 0

Views

Author

Gus Wiseman, Sep 14 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (11111)  (411)     (421)      (422)
                                     (2211)    (511)      (611)
                                     (21111)   (22111)    (2222)
                                     (111111)  (31111)    (3311)
                                               (1111111)  (22211)
                                                          (41111)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

Allowing any reverse-alternating product >= 1 gives A344607.
Allowing any reverse-alternating product < 1 gives A344608.
The multiplicative version is A347442, unreversed A347437.
Allowing any reverse-alternating product <= 1 gives A347443.
Restricting to odd length gives A347444, ranked by A347453.
The unreversed version is A347446, ranked by A347457.
Allowing any reverse-alternating product > 1 gives A347449.
Ranked by A347454.
A000041 counts partitions, with multiplicative version A001055.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A339890 counts factorizations with alternating product > 1, reverse A347705.
A347462 counts possible reverse-alternating products of partitions.

Programs

  • Mathematica
    revaltprod[q_]:=Product[Reverse[q][[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],IntegerQ[revaltprod[#]]&]],{n,0,30}]

A347443 Number of integer partitions of n with reverse-alternating product <= 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 10, 12, 19, 22, 34, 40, 60, 69, 101, 118, 168, 195, 272, 317, 434, 505, 679, 793, 1050, 1224, 1599, 1867, 2409, 2811, 3587, 4186, 5290, 6168, 7724, 9005, 11186, 13026, 16062, 18692, 22894, 26613, 32394, 37619, 45535, 52815, 63593, 73680
Offset: 0

Views

Author

Gus Wiseman, Sep 14 2021

Keywords

Comments

Includes all partitions of even length (A027187).
Also the number of integer partitions of n with reverse-alternating sum <= 1.
Also the number of integer partitions of n having either even length (A027187) or having exactly one odd part in the conjugate partition (A100824).
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (2111)   (2211)    (331)      (71)
                            (11111)  (3111)    (2221)     (2222)
                                     (111111)  (3211)     (3221)
                                               (4111)     (3311)
                                               (22111)    (4211)
                                               (211111)   (5111)
                                               (1111111)  (221111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

The odd-length case is A035363 (shifted).
The strict case is A067661.
The non-reverse version is counted by A119620, ranked by A347466.
The even bisection is A236913.
The opposite version (>= instead of <=) is A344607.
The case of < 1 instead of <= 1 is A344608.
The multiplicative version (factorizations) is A347438, non-reverse A339846.
Allowing any integer reverse-alternating product gives A347445.
The complement (> 1 instead of <= 1) is counted by A347449.
Ranked by A347465, non-reverse A347450.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A058622 counts compositions with alternating sum <= 0 (A294175 for < 0).
A100824 counts partitions with alternating sum <= 1.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A347461 counts possible alternating products of partitions.
A347462 counts possible reverse-alternating products of partitions.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],altprod[Reverse[#]]<=1&]],{n,0,30}]

Formula

a(n) = A027187(n) + A035363(n-1) for n >= 1. [Corrected by Georg Fischer, Dec 13 2022]
a(n) = A119620(n) + A344608(n).

A347450 Numbers whose multiset of prime indices has alternating product <= 1.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 10, 14, 15, 16, 18, 21, 22, 24, 25, 26, 32, 33, 34, 35, 36, 38, 39, 40, 46, 49, 50, 51, 54, 55, 56, 57, 58, 60, 62, 64, 65, 69, 72, 74, 77, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 100, 104, 106, 111, 115, 118, 119, 121, 122
Offset: 1

Views

Author

Gus Wiseman, Sep 24 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
Also Heinz numbers integer partitions with reverse-alternating product <= 1, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Also numbers whose multiset of prime indices has alternating sum <= 1.

Examples

			The initial terms and their prime indices:
      1: {}            26: {1,6}           56: {1,1,1,4}
      2: {1}           32: {1,1,1,1,1}     57: {2,8}
      4: {1,1}         33: {2,5}           58: {1,10}
      6: {1,2}         34: {1,7}           60: {1,1,2,3}
      8: {1,1,1}       35: {3,4}           62: {1,11}
      9: {2,2}         36: {1,1,2,2}       64: {1,1,1,1,1,1}
     10: {1,3}         38: {1,8}           65: {3,6}
     14: {1,4}         39: {2,6}           69: {2,9}
     15: {2,3}         40: {1,1,1,3}       72: {1,1,1,2,2}
     16: {1,1,1,1}     46: {1,9}           74: {1,12}
     18: {1,2,2}       49: {4,4}           77: {4,5}
     21: {2,4}         50: {1,3,3}         81: {2,2,2,2}
     22: {1,5}         51: {2,7}           82: {1,13}
     24: {1,1,1,2}     54: {1,2,2,2}       84: {1,1,2,4}
     25: {3,3}         55: {3,5}           85: {3,7}
		

Crossrefs

The additive version (alternating sum <= 0) is A028260.
The reverse version is A028982, counted by A119620.
Allowing any alternating product < 1 gives A119899.
Factorizations of this type are counted by A339846, complement A339890.
Allowing any alternating product >= 1 gives A344609, multiplicative A347456.
Partitions of this type are counted by A347443.
Allowing any integer alternating product gives A347454, reciprocal A347451.
The complement is A347465, reverse A028983, counted by A347448.
A056239 adds up prime indices, row sums of A112798.
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A335433 lists numbers whose prime indices are separable, complement A335448.
A344606 counts alternating permutations of prime indices.
A347457 lists Heinz numbers of partitions with integer alternating product.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Select[Range[100],altprod[primeMS[#]]<=1&]

Formula

Union of A028982 and A119899.
Union of A028260 and A001105.

A347444 Number of odd-length integer partitions of n with integer alternating product.

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 4, 8, 7, 14, 13, 24, 21, 40, 35, 62, 55, 99, 85, 151, 128, 224, 195, 331, 283, 481, 416, 690, 593, 980, 844, 1379, 1189, 1918, 1665, 2643, 2292, 3630, 3161, 4920, 4299, 6659, 5833, 8931, 7851, 11905, 10526, 15805, 13987, 20872, 18560, 27398
Offset: 0

Views

Author

Gus Wiseman, Sep 14 2021

Keywords

Comments

We define the alternating product of a sequence (y_1, ... ,y_k) to be the Product_i y_i^((-1)^(i-1)).
The reverse version (integer reverse-alternating product) is the same.

Examples

			The a(1) = 1 through a(9) = 14 partitions:
  (1)  (2)  (3)    (4)    (5)      (6)      (7)        (8)        (9)
            (111)  (211)  (221)    (222)    (322)      (332)      (333)
                          (311)    (411)    (331)      (422)      (441)
                          (11111)  (21111)  (421)      (611)      (522)
                                            (511)      (22211)    (621)
                                            (22111)    (41111)    (711)
                                            (31111)    (2111111)  (22221)
                                            (1111111)             (32211)
                                                                  (33111)
                                                                  (42111)
                                                                  (51111)
                                                                  (2211111)
                                                                  (3111111)
                                                                  (111111111)
		

Crossrefs

The reciprocal version is A035363.
Allowing any alternating product gives A027193.
The multiplicative version (factorizations) is A347441.
Allowing any length gives A347446, reverse A347445.
Allowing any length and alternating product > 1 gives A347448.
Allowing any reverse-alternating product > 1 gives A347449.
Ranked by A347453.
The even-length instead of odd-length version is A347704.
A000041 counts partitions.
A000302 counts odd-length compositions, ranked by A053738.
A025047 counts wiggly compositions.
A026424 lists numbers with odd bigomega.
A027187 counts partitions of even length, strict A067661.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A119620 counts partitions with alternating product 1, ranked by A028982.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A339890 counts odd-length factorizations.
A347437 counts factorizations with integer alternating product.
A347461 counts possible alternating products of partitions.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,0,30}]

A347449 Number of integer partitions of n with reverse-alternating product > 1.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 5, 10, 11, 20, 22, 37, 41, 66, 75, 113, 129, 190, 218, 310, 358, 497, 576, 782, 908, 1212, 1411, 1851, 2156, 2793, 3255, 4163, 4853, 6142, 7159, 8972, 10451, 12989, 15123, 18646, 21689, 26561, 30867, 37556, 43599, 52743, 61161, 73593
Offset: 0

Views

Author

Gus Wiseman, Sep 16 2021

Keywords

Comments

All such partitions have odd length.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			The a(2) = 1 through a(9) = 11 partitions:
  (2)  (3)  (4)    (5)    (6)      (7)      (8)        (9)
            (211)  (311)  (222)    (322)    (332)      (333)
                          (321)    (421)    (422)      (432)
                          (411)    (511)    (431)      (522)
                          (21111)  (31111)  (521)      (531)
                                            (611)      (621)
                                            (22211)    (711)
                                            (32111)    (32211)
                                            (41111)    (42111)
                                            (2111111)  (51111)
                                                       (3111111)
		

Crossrefs

The strict case is A067659, except that a(0) = a(1) = 0.
The even bisection is A236559.
The non-reverse multiplicative version is A339890, weak A347456.
The case of >= 1 instead of > 1 is A344607.
The opposite version is A344608, also the non-reverse even-length case.
The complement is counted by A347443, non-reverse A119620.
Allowing any integer reverse-alternating product gives A347445.
Allowing any integer alternating product gives A347446.
Reverse version of A347448; also the odd-length case.
The Heinz numbers of these partitions are the complement of A347450.
The multiplicative version (factorizations) is A347705.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A100824 counts partitions of n with alternating sum <= 1.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A347462 counts possible reverse-alternating products of partitions.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],altprod[Reverse[#]]>1&]],{n,0,30}]

Formula

a(n) = A344607(n) - A119620(n).

A347465 Numbers whose multiset of prime indices has alternating product > 1.

Original entry on oeis.org

3, 5, 7, 11, 12, 13, 17, 19, 20, 23, 27, 28, 29, 30, 31, 37, 41, 42, 43, 44, 45, 47, 48, 52, 53, 59, 61, 63, 66, 67, 68, 70, 71, 73, 75, 76, 78, 79, 80, 83, 89, 92, 97, 99, 101, 102, 103, 105, 107, 108, 109, 110, 112, 113, 114, 116, 117, 120, 124, 125, 127
Offset: 1

Views

Author

Gus Wiseman, Sep 27 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
All terms have odd bigomega (A001222).
Also Heinz numbers integer partitions with reverse-alternating product > 1.

Examples

			The terms and their prime indices begin:
      3: {2}         37: {12}            68: {1,1,7}
      5: {3}         41: {13}            70: {1,3,4}
      7: {4}         42: {1,2,4}         71: {20}
     11: {5}         43: {14}            73: {21}
     12: {1,1,2}     44: {1,1,5}         75: {2,3,3}
     13: {6}         45: {2,2,3}         76: {1,1,8}
     17: {7}         47: {15}            78: {1,2,6}
     19: {8}         48: {1,1,1,1,2}     79: {22}
     20: {1,1,3}     52: {1,1,6}         80: {1,1,1,1,3}
     23: {9}         53: {16}            83: {23}
     27: {2,2,2}     59: {17}            89: {24}
     28: {1,1,4}     61: {18}            92: {1,1,9}
     29: {10}        63: {2,2,4}         97: {25}
     30: {1,2,3}     66: {1,2,5}         99: {2,2,5}
     31: {11}        67: {19}           101: {26}
		

Crossrefs

The squarefree case is A030059 without 2.
The reverse version is A028983, counted by A119620.
The opposite version (< 1 instead of > 1) is A119899.
Factorizations of this type are counted by A339890, reverse A347705.
The weak version (>= 1 instead of > 1) is A344609.
Partitions of this type are counted by A347449, reverse A347448.
The complement is A347450, counted by A339846 or A347443.
Allowing any integer reverse-alternating product gives A347454.
Allowing any integer alternating product gives A347457.
A335433 ranks inseparable partitions, complement A335448.
A347446 counts partitions with integer alternating product, reverse A347445.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Select[Range[100],altprod[primeMS[#]]>1&]
Showing 1-10 of 15 results. Next