A182616
Number of partitions of 2n that contain odd parts.
Original entry on oeis.org
0, 1, 3, 8, 17, 35, 66, 120, 209, 355, 585, 946, 1498, 2335, 3583, 5428, 8118, 12013, 17592, 25525, 36711, 52382, 74173, 104303, 145698, 202268, 279153, 383145, 523105, 710655, 960863, 1293314, 1733281, 2313377, 3075425, 4073085, 5374806, 7067863, 9263076
Offset: 0
For n=3 the partitions of 2n are
6 ....................... does not contains odd parts
3 + 3 ................... contains odd parts ........... *
4 + 2 ................... does not contains odd parts
2 + 2 + 2 ............... does not contains odd parts
5 + 1 ................... contains odd parts ........... *
3 + 2 + 1 ............... contains odd parts ........... *
4 + 1 + 1 ............... contains odd parts ........... *
2 + 2 + 1 + 1 ........... contains odd parts ........... *
3 + 1 + 1 + 1 ........... contains odd parts ........... *
2 + 1 + 1 + 1 + 1 ....... contains odd parts ........... *
1 + 1 + 1 + 1 + 1 + 1 ... contains odd parts ........... *
There are 8 partitions of 2n that contain odd parts.
Also p(2n)-p(n) = p(6)-p(3) = 11-3 = 8, where p(n) is the number of partitions of n, so a(3)=8.
From _Gus Wiseman_, Oct 18 2023: (Start)
For n > 0, also the number of integer partitions of 2n that do not contain n, ranked by A366321. For example, the a(1) = 1 through a(4) = 17 partitions are:
(2) (4) (6) (8)
(31) (42) (53)
(1111) (51) (62)
(222) (71)
(411) (332)
(2211) (521)
(21111) (611)
(111111) (2222)
(3221)
(3311)
(5111)
(22211)
(32111)
(221111)
(311111)
(2111111)
(11111111)
(End)
These partitions have ranks
A366530.
A006477 counts partitions with at least one odd and even part, ranks
A366532.
-
with(combinat): a:= n-> numbpart(2*n) -numbpart(n): seq(a(n), n=0..35);
-
Table[Length[Select[IntegerPartitions[2n],n>0&&FreeQ[#,n]&]],{n,0,15}] (* Gus Wiseman, Oct 11 2023 *)
Table[Length[Select[IntegerPartitions[2n],Or@@OddQ/@#&]],{n,0,15}] (* Gus Wiseman, Oct 11 2023 *)
A174713
Triangle read by rows, A173305 (A000009 shifted down twice) * A174712 (diagonalized variant of A000041).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 2, 4, 2, 2, 3, 5, 3, 4, 3, 6, 4, 4, 3, 5, 8, 5, 6, 6, 5, 10, 6, 8, 6, 5, 7, 12, 8, 10, 9, 10, 7, 15, 10, 12, 12, 10, 7, 11, 18, 12, 16, 15, 15, 14, 11, 22, 15, 20, 18, 20, 14, 11, 15
Offset: 0
First few rows of the triangle =
1;
1;
1, 1;
2, 1;
2, 1, 2;
3, 2, 2;
4, 2, 2, 3;
5, 3, 4, 3;
6, 4, 4, 3, 5;
8, 5, 6, 6, 5;
10, 6, 8, 6, 5, 7;
12, 8, 10, 9, 10, 7;
15, 10, 12, 12, 10, 7, 11;
18, 12, 16, 15, 15, 14, 11;
22, 15, 20, 18, 20, 14, 11, 15;
...
From _Gus Wiseman_, Oct 23 2023: (Start)
Row n = 9 counts the following partitions:
(9) (72) (54) (63) (81)
(711) (5211) (522) (6111) (621)
(531) (3321) (4311) (432) (441)
(51111) (321111) (411111) (42111) (4221)
(333) (21111111) (32211) (3222) (22221)
(33111) (2211111) (222111)
(3111111)
(111111111)
(End)
A239261 counts partitions with (sum of odd parts) = (sum of even parts).
-
Table[Length[Select[IntegerPartitions[n],Total[Select[#,EvenQ]]==k&]],{n,0,15},{k,0,n,2}] (* Gus Wiseman, Oct 23 2023 *)
A366529
Heinz numbers of integer partitions of even numbers with at least one even part.
Original entry on oeis.org
3, 7, 9, 12, 13, 19, 21, 27, 28, 29, 30, 36, 37, 39, 43, 48, 49, 52, 53, 57, 61, 63, 66, 70, 71, 75, 76, 79, 81, 84, 87, 89, 90, 91, 101, 102, 107, 108, 111, 112, 113, 116, 117, 120, 129, 130, 131, 133, 138, 139, 144, 147, 148, 151, 154, 156, 159, 163, 165
Offset: 1
The terms together with their prime indices begin:
3: {2}
7: {4}
9: {2,2}
12: {1,1,2}
13: {6}
19: {8}
21: {2,4}
27: {2,2,2}
28: {1,1,4}
29: {10}
30: {1,2,3}
36: {1,1,2,2}
37: {12}
39: {2,6}
43: {14}
48: {1,1,1,1,2}
The complement is counted by
A047967.
Not requiring an even part gives
A300061.
For odd instead of even we have
A300063.
Not requiring even sum gives
A324929.
Partitions of this type are counted by
A366527.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],EvenQ[Total[prix[#]]]&&Or@@EvenQ/@prix[#]&]
Showing 1-3 of 3 results.
Comments