cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A000346 a(n) = 2^(2*n+1) - binomial(2*n+1, n+1).

Original entry on oeis.org

1, 5, 22, 93, 386, 1586, 6476, 26333, 106762, 431910, 1744436, 7036530, 28354132, 114159428, 459312152, 1846943453, 7423131482, 29822170718, 119766321572, 480832549478, 1929894318332, 7744043540348, 31067656725032, 124613686513778, 499744650202436
Offset: 0

Views

Author

Keywords

Comments

Also a(n) = 2nd elementary symmetric function of binomial(n,0), binomial(n,1), ..., binomial(n,n).
Also a(n) = one half the sum of the heights, over all Dyck (n+2)-paths, of the vertices that are at even height and terminate an upstep. For example with n=1, these vertices are indicated by asterisks in the 5 Dyck 3-paths: UU*UDDD, UU*DU*DD, UDUU*DD, UDUDUD, UU*DDUD, yielding a(1)=(2+4+2+0+2)/2=5. - David Callan, Jul 14 2006
Hankel transform is (-1)^n*(2n+1); the Hankel transform of sum(k=0..n, C(2*n,k) ) - C(2n,n) is (-1)^n*n. - Paul Barry, Jan 21 2007
Row sums of the Riordan matrix (1/(1-4x),(1-sqrt(1-4x))/2) (A187926). - Emanuele Munarini, Mar 16 2011
From Gus Wiseman, Jul 19 2021: (Start)
For n > 0, a(n-1) is also the number of integer compositions of 2n with nonzero alternating sum, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. These compositions are ranked by A053754 /\ A345921. For example, the a(3-1) = 22 compositions of 6 are:
(6) (1,5) (1,1,4) (1,1,1,3) (1,1,1,1,2)
(2,4) (1,2,3) (1,1,3,1) (1,1,2,1,1)
(4,2) (1,4,1) (1,2,1,2) (2,1,1,1,1)
(5,1) (2,1,3) (1,3,1,1)
(2,2,2) (2,1,2,1)
(3,1,2) (3,1,1,1)
(3,2,1)
(4,1,1)
(End)

Examples

			G.f. = 1 + 5*x + 22*x^2 + 93*x^3 + 386*x^4 + 1586*x^5 + 6476*x^6 + ...
		

References

  • T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.
  • D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000108, A014137, A014318. A column of A058893. Subdiagonal of A053979.
Bisection of A058622 and (possibly) A007008.
Even bisection of A294175 (without the first two terms).
The following relate to compositions of 2n with alternating sum k.
- The k > 0 case is counted by A000302.
- The k <= 0 case is counted by A000302.
- The k != 0 case is counted by A000346 (this sequence).
- The k = 0 case is counted by A001700 or A088218.
- The k < 0 case is counted by A008549.
- The k >= 0 case is counted by A114121.
A011782 counts compositions.
A086543 counts partitions with nonzero alternating sum (bisection: A182616).
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A345197 counts compositions by length and alternating sum.

Programs

  • Magma
    [2^(2*n+1) - Binomial(2*n+1,n+1): n in [0..30]]; // Vincenzo Librandi, Jun 07 2011
  • Maple
    seq(2^(2*n+1)-binomial(2*n,n)*(2*n+1)/(n+1), n=0..12); # Emanuele Munarini, Mar 16 2011
  • Mathematica
    Table[2^(2n+1)-Binomial[2n,n](2n+1)/(n+1),{n,0,20}] (* Emanuele Munarini, Mar 16 2011 *)
    a[ n_] := If[ n<-4, 0, (4^(n + 1) - Binomial[2 n + 2, n + 1]) / 2]; (* Michael Somos, Jan 25 2014 *)
  • Maxima
    makelist(2^(2*n+1)-binomial(2*n,n)*(2*n+1)/(n+1),n,0,12); /* Emanuele Munarini, Mar 16 2011 */
    
  • PARI
    {a(n) = if( n<-4, 0, n++; (2^(2*n) - binomial(2*n, n)) / 2)}; /* Michael Somos, Jan 25 2014 */
    

Formula

G.f.: c(x)/(1-4x), c(x) = g.f. of Catalan numbers.
Convolution of Catalan numbers and powers of 4.
Also one half of convolution of central binomial coeffs. A000984(n), n=0, 1, 2, ... with shifted central binomial coeffs. A000984(n), n=1, 2, 3, ...
a(n) = A045621(2n+1) = (1/2)*A068551(n+1).
a(n) = Sum_{k=0..n} A000984(k)*A001700(n-k). - Philippe Deléham, Jan 22 2004
a(n) = Sum_{k=0..n+1} binomial(n+k, k-1)2^(n-k+1). - Paul Barry, Nov 13 2004
a(n) = Sum_{i=0..n} binomial(2n+2, i). See A008949. - Ed Catmur (ed(AT)catmur.co.uk), Dec 09 2006
a(n) = Sum_{k=0..n+1, C(2n+2,k)} - C(2n+2,n+1). - Paul Barry, Jan 21 2007
Logarithm g.f. log(1/(2-C(x)))=sum(n>0, a(n)/n*x^n), C(x)=(1-sqrt(1-4*x))/2x (A000108). - Vladimir Kruchinin, Aug 10 2010
D-finite with recurrence: (n+3) a(n+2) - 2(4n+9) a(n+1) + 8(2n+3) a(n) = 0. - Emanuele Munarini, Mar 16 2011
E.g.f.:exp(2*x)*(2*exp(2*x) - BesselI(0,2*x) - BesselI(1,2*x)).
This is the first derivative of exp(2*x)*(exp(2*x) - BesselI(0,2*x))/2. See the e.g.f. of A032443 (which has a plus sign) and the remarks given there. - Wolfdieter Lang, Jan 16 2012
a(n) = Sum_{0<=iMircea Merca, Apr 05 2012
A000346 = A004171 - A001700. See A032443 for the sum. - M. F. Hasler, Jan 02 2014
0 = a(n) * (256*a(n+1) - 224*a(n+2) + 40*a(n+3)) + a(n+1) * (-32*a(n+1) + 56*a(n+2) - 14*a(n+3)) + a(n+2) * (-2*a(n+2) + a(n+3)) if n>-5. - Michael Somos, Jan 25 2014
REVERT transform is [1,-5,28,-168,1056,...] = alternating signed version of A069731. - Michael Somos, Jan 25 2014
Convolution square is A038806. - Michael Somos, Jan 25 2014
BINOMIAL transform of A055217(n-1) is a(n-1). - Michael Somos, Jan 25 2014
(n+1) * a(n) = A033504(n). - Michael Somos, Jan 25 2014
Recurrence: (n+1)*a(n) = 512*(2*n-7)*a(n-5) + 256*(13-5*n)*a(n-4) + 64*(10*n-17)*a(n-3) + 32*(4-5*n)*a(n-2) + 2*(10*n+1)*a(n-1), n>=5. - Fung Lam, Mar 21 2014
Asymptotic approximation: a(n) ~ 2^(2n+1)*(1-1/sqrt(n*Pi)). - Fung Lam, Mar 21 2014
a(n) = Sum_{m = n+2..2*(n+1)} binomial(2*(n+1), m), n >= 0. - Wolfdieter Lang, May 22 2015
a(n) = A000302(n) + A008549(n). - Gus Wiseman, Jul 19 2021
a(n) = Sum_{j=1..n+1} Sum_{k=1..j} 2^(j-k)*binomial(n+k-1, n). - Fabio Visonà, May 04 2022
a(n) = (1/2)*(-1)^n*binomial(-(n+1), n+2)*hypergeom([1, 2*n + 3], [n + 3], 1/2). - Peter Luschny, Nov 29 2023

Extensions

Corrected by Christian G. Bower

A027306 a(n) = 2^(n-1) + ((1 + (-1)^n)/4)*binomial(n, n/2).

Original entry on oeis.org

1, 1, 3, 4, 11, 16, 42, 64, 163, 256, 638, 1024, 2510, 4096, 9908, 16384, 39203, 65536, 155382, 262144, 616666, 1048576, 2449868, 4194304, 9740686, 16777216, 38754732, 67108864, 154276028, 268435456, 614429672, 1073741824, 2448023843
Offset: 0

Views

Author

Keywords

Comments

Inverse binomial transform of A027914. Hankel transform (see A001906 for definition) is {1, 2, 3, 4, ..., n, ...}. - Philippe Deléham, Jul 21 2005
Number of walks of length n on a line that starts at the origin and ends at or above 0. - Benjamin Phillabaum, Mar 05 2011
Number of binary integers (i.e., with a leading 1 bit) of length n+1 which have a majority of 1-bits. E.g., for n+1=4: (1011, 1101, 1110, 1111) a(3)=4. - Toby Gottfried, Dec 11 2011
Number of distinct symmetric staircase walks connecting opposite corners of a square grid of side n > 1. - Christian Barrientos, Nov 25 2018
From Gus Wiseman, Aug 20 2021: (Start)
Also the number of integer compositions of n + 1 with alternating sum > 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. These compositions are ranked by A345917. For example, the a(0) = 1 through a(4) = 11 compositions are:
(1) (2) (3) (4) (5)
(21) (31) (32)
(111) (112) (41)
(211) (113)
(122)
(212)
(221)
(311)
(1121)
(2111)
(11111)
The following relate to these compositions:
- The unordered version is A027193.
- The complement is counted by A058622.
- The reverse unordered version is A086543.
- The version for alternating sum >= 0 is A116406.
- The version for alternating sum < 0 is A294175.
- Ranked by A345917. (End)
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. - Peter Bala, Jan 07 2022

Examples

			From _Gus Wiseman_, Aug 20 2021: (Start)
The a(0) = 1 through a(4) = 11 binary numbers with a majority of 1-bits (Gottfried's comment) are:
  1   11   101   1011   10011
           110   1101   10101
           111   1110   10110
                 1111   10111
                        11001
                        11010
                        11011
                        11100
                        11101
                        11110
                        11111
The version allowing an initial zero is A058622.
(End)
		

References

  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.1.6)

Crossrefs

a(n) = Sum{(k+1)T(n, m-k)}, 0<=k<=[ (n+1)/2 ], T given by A008315.
Column k=2 of A226873. - Alois P. Heinz, Jun 21 2013
The even bisection is A000302.
The odd bisection appears to be A032443.

Programs

  • GAP
    List([0..35],n->Sum([0..Int(n/2)],k->Binomial(n,k))); # Muniru A Asiru, Nov 27 2018
  • Haskell
    a027306 n = a008949 n (n `div` 2)  -- Reinhard Zumkeller, Nov 14 2014
    
  • Magma
    [2^(n-1)+(1+(-1)^n)/4*Binomial(n, n div 2): n in [0..40]]; // Vincenzo Librandi, Jun 19 2016
    
  • Maple
    a:= proc(n) add(binomial(n, j), j=0..n/2) end:
    seq(a(n), n=0..32); # Zerinvary Lajos, Mar 29 2009
  • Mathematica
    Table[Sum[Binomial[n, k], {k, 0, Floor[n/2]}], {n, 1, 35}]
    (* Second program: *)
    a[0] = a[1] = 1; a[2] = 3; a[n_] := a[n] = (2(n-1)(2a[n-2] + a[n-1]) - 8(n-2) a[n-3])/n; Array[a, 33, 0] (* Jean-François Alcover, Sep 04 2016 *)
  • PARI
    a(n)=if(n<0,0,(2^n+if(n%2,0,binomial(n, n/2)))/2)
    

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n,k).
Odd terms are 2^(n-1). Also a(2n) - 2^(2n-1) is given by A001700. a(n) = 2^n + (n mod 2)*binomial(n, (n-1)/2).
E.g.f.: (exp(2x) + I_0(2x))/2.
O.g.f.: 2*x/(1-2*x)/(1+2*x-((1+2*x)*(1-2*x))^(1/2)). - Vladeta Jovovic, Apr 27 2003
a(n) = A008949(n, floor(n/2)); a(n) + a(n-1) = A248574(n), n > 0. - Reinhard Zumkeller, Nov 14 2014
From Peter Bala, Jul 21 2015: (Start)
a(n) = [x^n]( 2*x - 1/(1 - x) )^n.
O.g.f.: (1/2)*( 1/sqrt(1 - 4*x^2) + 1/(1 - 2*x) ).
Inverse binomial transform is (-1)^n*A246437(n).
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + ... is the o.g.f. for A001405. (End)
a(n) = Sum_{k=1..floor((n+1)/2)} binomial(n-1,(2n+1-(-1)^n)/4 -k). - Anthony Browne, Jun 18 2016
D-finite with recurrence: n*a(n) + 2*(-n+1)*a(n-1) + 4*(-n+1)*a(n-2) + 8*(n-2)*a(n-3) = 0. - R. J. Mathar, Aug 09 2017

Extensions

Better description from Robert G. Wilson v, Aug 30 2000 and from Yong Kong (ykong(AT)curagen.com), Dec 28 2000

A058622 a(n) = 2^(n-1) - ((1+(-1)^n)/4)*binomial(n, n/2).

Original entry on oeis.org

0, 1, 1, 4, 5, 16, 22, 64, 93, 256, 386, 1024, 1586, 4096, 6476, 16384, 26333, 65536, 106762, 262144, 431910, 1048576, 1744436, 4194304, 7036530, 16777216, 28354132, 67108864, 114159428, 268435456, 459312152, 1073741824, 1846943453
Offset: 0

Views

Author

Yong Kong (ykong(AT)curagen.com), Dec 29 2000

Keywords

Comments

a(n) is the number of n-digit binary sequences that have more 1's than 0's. - Geoffrey Critzer, Jul 16 2009
Maps to the number of walks that end above 0 on the number line with steps being 1 or -1. - Benjamin Phillabaum, Mar 06 2011
Chris Godsil observes that a(n) is the independence number of the (n+1)-folded cube graph; proof is by a Cvetkovic's eigenvalue bound to establish an upper bound and a direct construction of the independent set by looking at vertices at an odd (resp., even) distance from a fixed vertex when n is odd (resp., even). - Stan Wagon, Jan 29 2013
Also the number of subsets of {1,2,...,n} that contain more odd than even numbers. For example, for n=4, a(4)=5 and the 5 subsets are {1}, {3}, {1,3}, {1,2,3}, {1,3,4}. See A014495 when same number of even and odd numbers. - Enrique Navarrete, Feb 10 2018
Also half the number of length-n binary sequences with a different number of zeros than ones. This is also the number of integer compositions of n with nonzero alternating sum, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. Also the number of integer compositions of n+1 with alternating sum <= 0, ranked by A345915 (reverse: A345916). - Gus Wiseman, Jul 19 2021

Examples

			G.f. = x + x^2 + 4*x^3 + 5*x^4 + 16*x^5 + 22*x^6 + 64*x^7 + 93*x^8 + ...
From _Gus Wiseman_, Jul 19 2021: (Start)
The a(1) = 1 through a(5) = 16 compositions with nonzero alternating sum:
  (1)  (2)  (3)      (4)      (5)
            (1,2)    (1,3)    (1,4)
            (2,1)    (3,1)    (2,3)
            (1,1,1)  (1,1,2)  (3,2)
                     (2,1,1)  (4,1)
                              (1,1,3)
                              (1,2,2)
                              (1,3,1)
                              (2,1,2)
                              (2,2,1)
                              (3,1,1)
                              (1,1,1,2)
                              (1,1,2,1)
                              (1,2,1,1)
                              (2,1,1,1)
                              (1,1,1,1,1)
(End)
		

References

  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.1.7)

Crossrefs

The odd bisection is A000302.
The even bisection is A000346.
The following relate to compositions with nonzero alternating sum:
- The complement is counted by A001700 or A138364.
- The version for alternating sum > 0 is A027306.
- The unordered version is A086543 (even bisection: A182616).
- The version for alternating sum < 0 is A294175.
- These compositions are ranked by A345921.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A345197 counts compositions by length and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Magma
    [(2^n -(1+(-1)^n)*Binomial(n, Floor(n/2))/2)/2: n in [0..40]]; // G. C. Greubel, Aug 08 2022
    
  • Mathematica
    Table[Sum[Binomial[n, Floor[n/2 + i]], {i, 1, n}], {n, 0, 32}] (* Geoffrey Critzer, Jul 16 2009 *)
    a[n_] := If[n < 0, 0, (2^n - Boole[EvenQ @ n] Binomial[n, Quotient[n, 2]])/2]; (* Michael Somos, Nov 22 2014 *)
    a[n_] := If[n < 0, 0, n! SeriesCoefficient[(Exp[2 x] - BesselI[0, 2 x])/2, {x, 0, n}]]; (* Michael Somos, Nov 22 2014 *)
    Table[2^(n - 1) - (1 + (-1)^n) Binomial[n, n/2]/4, {n, 0, 40}] (* Eric W. Weisstein, Mar 21 2018 *)
    CoefficientList[Series[2 x/((1-2x)(1 + 2x + Sqrt[(1+2x)(1-2x)])), {x, 0, 40}], x] (* Eric W. Weisstein, Mar 21 2018 *)
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],ats[#]!=0&]],{n,0,15}] (* Gus Wiseman, Jul 19 2021 *)
  • PARI
    a(n) = 2^(n-1) - ((1+(-1)^n)/4)*binomial(n, n\2); \\ Michel Marcus, Dec 30 2015
    
  • PARI
    my(x='x+O('x^100)); concat(0, Vec(2*x/((1-2*x)*(1+2*x+((1+2*x)*(1-2*x))^(1/2))))) \\ Altug Alkan, Dec 30 2015
    
  • Python
    from math import comb
    def A058622(n): return (1<>1)>>1) if n else 0 # Chai Wah Wu, Aug 25 2025
  • SageMath
    [(2^n - binomial(n, n//2)*((n+1)%2))/2 for n in (0..40)] # G. C. Greubel, Aug 08 2022
    

Formula

a(n) = 2^(n-1) - ((1+(-1)^n)/4)*binomial(n, n/2).
a(n) = Sum_{i=0..floor((n-1)/2)} binomial(n, i).
G.f.: 2*x/((1-2*x)*(1+2*x+((1+2*x)*(1-2*x))^(1/2))). - Vladeta Jovovic, Apr 27 2003
E.g.f: (e^(2x)-I_0(2x))/2 where I_n is the Modified Bessel Function. - Benjamin Phillabaum, Mar 06 2011
Logarithmic derivative of the g.f. of A210736 is a(n+1). - Michael Somos, Nov 22 2014
Even index: a(2n) = 2^(n-1) - A088218(n). Odd index: a(2n+1) = 2^(2n). - Gus Wiseman, Jul 19 2021
D-finite with recurrence n*a(n) +2*(-n+1)*a(n-1) +4*(-n+1)*a(n-2) +8*(n-2)*a(n-3)=0. - R. J. Mathar, Sep 23 2021
a(n) = 2^n-A027306(n). - R. J. Mathar, Sep 23 2021
A027306(n) - a(n) = A126869(n). - R. J. Mathar, Sep 23 2021

A119620 Number of partitions of floor(3n/2) into n parts each from {1,2,...,n}.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 15, 15, 22, 22, 30, 30, 42, 42, 56, 56, 77, 77, 101, 101, 135, 135, 176, 176, 231, 231, 297, 297, 385, 385, 490, 490, 627, 627, 792, 792, 1002, 1002, 1255, 1255, 1575, 1575, 1958, 1958, 2436, 2436, 3010, 3010, 3718, 3718
Offset: 0

Views

Author

John W. Layman, Jun 07 2006

Keywords

Comments

The bisection {1,1,2,3,5,7,11,15,22,...} agrees with the initial terms of A008641, Number of partitions of n into at most 12 parts and also A008635, Molien series for A_12.
a(2n+1)=a(2n) for all n>0. If the partition {...,1} is a member of a(2n) then the partition {...,1,1} is a member of a(2n+1). - Robert G. Wilson v, Jun 09 2006
Number of partitions of n where all parts (except for possibly the first part) are even; see example. - Joerg Arndt, Apr 22 2013
For n >= 2, a(n) = number of partitions p of n such that floor(n/2) is a part of p. For n >= 1, a(n) = number of partitions p of n such that ceiling(n/2) is a part of p. - Clark Kimberling, Feb 28 2014
From Gus Wiseman, Oct 28 2021: (Start)
If we insert zeros every three terms, this counts partitions of n such that n = floor(3*k/2), where k is the number of parts. This counts by sum rather than length. These partitions are ranked by A347452.
Also the number of integer partitions of n with alternating product 1, where the alternating product of a sequence (y_1,...,y_k) is Product_i y_i^((-1)^(i-1)). These are the conjugates of the partitions (ranked by A336119) described in Arndt's comment above. For example, the a(2) = 1 through a(10) = 7 partitions are:
11 111 22 221 33 331 44 441 55
1111 11111 2211 22111 2222 22221 3322
111111 1111111 3311 33111 4411
221111 2211111 222211
11111111 111111111 331111
22111111
1111111111
These partitions are ranked by A028982. The odd-length case is A035363 (shifted), which is also the version for sum instead of product. The multiplicative version (factorizations) is A347438.
(End)

Examples

			For n=8, floor(3*n/2) is 12 and there are five partitions of 12 into 8 parts each in the range 1-8 inclusive, namely: {5,1,1,1,1,1,1,1}, {4,2,1,1,1,1,1,1}, {3,3,1,1,1,1,1,1}, {3,2,2,1,1,1,1,1} and {2,2,2,2,1,1,1,1}. Thus a(8)=5.
From _Joerg Arndt_, Apr 22 2013: (Start)
a(8) = a(9) = 5, counting the following partitions where all parts (except for possibly the first part) are even:
01:  [ 2 2 2 2 ]
02:  [ 4 2 2 ]
03:  [ 4 4 ]
04:  [ 6 2 ]
05:  [ 8 ]
and
01:  [ 3 2 2 2 ]
02:  [ 5 2 2 ]
03:  [ 5 4 ]
04:  [ 7 2 ]
05:  [ 9 ]
(End)
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 5*x^8 + 5*x^9 + 7*x^10 + ...
		

Crossrefs

Both bisections are A000041.
An adjoint version is A108711.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A325534 counts separable partitions.
A325535 counts inseparable partitions.

Programs

  • Maple
    # Using the function EULER from Transforms (see link at the bottom of the page).
    [1, op(EULER([1,0,seq(irem(n,2),n=2..55)]))]; # Peter Luschny, Aug 19 2020
  • Mathematica
    (* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) f[n_] := f[n] = Length@ Select[ Partitions[ Floor[3n/2], n], Length@# == n &]; Table[ If[n > 1, f[2Floor[n/2]], f[n]], {n, 57}] (* Robert G. Wilson v, Jun 09 2006 *)
    Table[ PartitionsP[ Floor[n/2]], {n, 57}] (* Robert G. Wilson v, Jun 09 2006 *)
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Ceiling[n/2]]], {n, 50}] (* Clark Kimberling, Feb 28 2014 *)
    a[ n_] := SeriesCoefficient[ (1 + x) / QPochhammer[x^2], {x, 0, n}]; (* Michael Somos, Mar 01 2014 *)
  • PARI
    a(n)=numbpart(n\2); \\ Joerg Arndt, Apr 22 2013

Formula

a(n) = A000041(floor(n/2)). - Vladeta Jovovic, Jun 10 2006
G.f.: (Sum_{n>=0} x^(4*n) / Product_{k=1..n} (1-x^(2*k))) / (1 - x). - Michael Somos, Mar 01 2014 [corrected by Jason Yuen, Jan 24 2025]

Extensions

More terms from Robert G. Wilson v, Jun 09 2006
Added a(0)=1. - Michael Somos, Mar 01 2014

A344608 Number of integer partitions of n with reverse-alternating sum < 0.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 3, 7, 7, 14, 15, 27, 29, 49, 54, 86, 96, 146, 165, 242, 275, 392, 449, 623, 716, 973, 1123, 1498, 1732, 2274, 2635, 3411, 3955, 5059, 5871, 7427, 8620, 10801, 12536, 15572, 18065, 22267, 25821, 31602, 36617, 44533, 51560, 62338, 72105, 86716
Offset: 0

Views

Author

Gus Wiseman, May 30 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
Also the number of reversed of integer partitions of n with alternating sum < 0.
No integer partitions have alternating sum < 0, so the non-reversed version is all zeros.
Is this sequence weakly increasing? Note: a(2n + 2) = A236914(n), a(2n) = A344743(n).
A formula for the reverse-alternating sum of a partition is: (-1)^(k-1) times the number of odd parts in the conjugate partition, where k is the number of parts. So a(n) is the number of integer partitions of n of even length whose conjugate parts are not all odd. Partitions of the latter type are counted by A086543. By conjugation, a(n) is also the number of integer partitions of n of even maximum whose parts are not all odd.

Examples

			The a(3) = 1 through a(9) = 14 partitions:
  (21)  (31)  (32)    (42)    (43)      (53)      (54)
              (41)    (51)    (52)      (62)      (63)
              (2111)  (3111)  (61)      (71)      (72)
                              (2221)    (3221)    (81)
                              (3211)    (4211)    (3222)
                              (4111)    (5111)    (3321)
                              (211111)  (311111)  (4221)
                                                  (4311)
                                                  (5211)
                                                  (6111)
                                                  (222111)
                                                  (321111)
                                                  (411111)
                                                  (21111111)
		

Crossrefs

The opposite version (rev-alt sum > 0) is A027193, ranked by A026424.
The strict case (for n > 2) is A067659 (odd bisection: A344650).
The Heinz numbers of these partitions are A119899 (complement: A344609).
The bisections are A236914 (odd) and A344743 (even).
The ordered version appears to be A294175 (even bisection: A008549).
The complement is counted by A344607 (even bisection: A344611).
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A027187 counts partitions with alternating sum <= 0, ranked by A028260.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions with rev-alternating sum 2 (negative: A344741).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344604 counts wiggly compositions with twins.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344618 gives reverse-alternating sums of standard compositions.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],sats[#]<0&]],{n,0,30}]

A366528 Sum of odd prime indices of n.

Original entry on oeis.org

0, 1, 0, 2, 3, 1, 0, 3, 0, 4, 5, 2, 0, 1, 3, 4, 7, 1, 0, 5, 0, 6, 9, 3, 6, 1, 0, 2, 0, 4, 11, 5, 5, 8, 3, 2, 0, 1, 0, 6, 13, 1, 0, 7, 3, 10, 15, 4, 0, 7, 7, 2, 0, 1, 8, 3, 0, 1, 17, 5, 0, 12, 0, 6, 3, 6, 19, 9, 9, 4, 0, 3, 21, 1, 6, 2, 5, 1, 0, 7, 0, 14, 23, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239(n).

Examples

			The prime indices of 198 are {1,2,2,5}, so a(198) = 1+5 = 6.
		

Crossrefs

Zeros are A066207, counted by A035363.
The triangle for this rank statistic is A113685, without zeros A365067.
For count instead of sum we have A257991, even A257992.
Nonzeros are A366322, counted by A086543.
The even version is A366531, halved A366533, triangle A113686.
A000009 counts partitions into odd parts, ranks A066208.
A053253 = partitions with all odd parts and conjugate parts, ranks A352143.
A066967 adds up sums of odd parts over all partitions.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A162641 counts even prime exponents, odd A162642.
A352142 = odd indices with odd exponents, counted by A117958.

Programs

  • Mathematica
    Table[Total[Cases[FactorInteger[n], {p_?(OddQ@*PrimePi),k_}:>PrimePi[p]*k]],{n,100}]

Formula

a(n) = A056239(n) - A366531(n).

A238628 Number of partitions p of n such that n - max(p) is a part of p.

Original entry on oeis.org

0, 1, 1, 3, 2, 5, 3, 8, 4, 11, 5, 16, 6, 21, 7, 29, 8, 38, 9, 51, 10, 66, 11, 88, 12, 113, 13, 148, 14, 190, 15, 246, 16, 313, 17, 402, 18, 508, 19, 646, 20, 812, 21, 1023, 22, 1277, 23, 1598, 24, 1982, 25, 2461, 26, 3036, 27, 3745, 28, 4593, 29, 5633
Offset: 1

Views

Author

Clark Kimberling, Mar 02 2014

Keywords

Comments

Also the number of integer partitions of n that are of length 2 or contain n/2. The first condition alone is A004526, complement A058984. The second condition alone is A035363, complement A086543, ranks A344415. - Gus Wiseman, Oct 07 2023

Examples

			a(6) counts these partitions:  51, 42, 33, 321, 3111.
		

Crossrefs

Cf. A238479.
The strict case is A365659, complement A365826.
The complement is counted by A365825.
These partitions are ranked by A366318.
A000041 counts integer partitions, strict A000009.
A140106 counts strict partitions of length 2, complement A365827.
A182616 counts partitions of 2n that do not contain n, strict A365828.

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, n - Max[p]]], {n, 50}]
  • PARI
    a(n) = my(res = floor(n/2)); if(!bitand(n, 1), res+=(numbpart(n/2)-1)); res
  • Python
    from sympy.utilities.iterables import partitions
    def A238628(n): return sum(1 for p in partitions(n) if n-max(p,default=0) in p) # Chai Wah Wu, Sep 21 2023
    

A053253 Coefficients of the '3rd-order' mock theta function omega(q).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 14, 18, 22, 29, 36, 44, 56, 68, 82, 101, 122, 146, 176, 210, 248, 296, 350, 410, 484, 566, 660, 772, 896, 1038, 1204, 1391, 1602, 1846, 2120, 2428, 2784, 3182, 3628, 4138, 4708, 5347, 6072, 6880, 7784, 8804, 9940, 11208, 12630
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

Comments

Empirical: a(n) is the number of integer partitions mu of 2n+1 such that the diagram of mu has an odd number of cells in each row and in each column. - John M. Campbell, Apr 24 2020
From Gus Wiseman, Jun 26 2022: (Start)
By Campbell's conjecture above that a(n) is the number of partitions of 2n+1 with all odd parts and all odd conjugate parts, the a(0) = 1 through a(5) = 8 partitions are (B = 11):
(1) (3) (5) (7) (9) (B)
(111) (311) (511) (333) (533)
(11111) (31111) (711) (911)
(1111111) (51111) (33311)
(3111111) (71111)
(111111111) (5111111)
(311111111)
(11111111111)
These partitions are ranked by A352143. (End)

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 15, 17, 31.

Crossrefs

Other '3rd-order' mock theta functions are at A000025, A053250, A053251, A053252, A053254, A053255, A261401.
Cf. A095913(n)=a(n-3).
Cf. A259094.
Conjectured to count the partitions ranked by A352143.
A069911 = strict partitions w/ all odd parts, ranked by A258116.
A078408 = partitions w/ all odd parts, ranked by A066208.
A117958 = partitions w/ all odd parts and multiplicities, ranked by A352142.

Programs

  • Mathematica
    Series[Sum[q^(2n(n+1))/Product[1-q^(2k+1), {k, 0, n}]^2, {n, 0, 6}], {q, 0, 100}]
  • PARI
    {a(n)=local(A); if(n<0, 0, A=1+x*O(x^n); polcoeff( sum(k=0, (sqrtint(2*n+1)-1)\2, A*=(x^(4*k)/(1-x^(2*k+1))^2 +x*O(x^(n-2*(k^2-k))))), n))} /* Michael Somos, Aug 18 2006 */
    
  • PARI
    {a(n)=local(A); if(n<0, 0, n++; A=1+x*O(x^n); polcoeff( sum(k=0, n-1, A*=(x/(1-x^(2*k+1)) +x*O(x^(n-k)))), n))} /* Michael Somos, Aug 18 2006 */

Formula

G.f.: omega(q) = Sum_{n>=0} q^(2*n*(n+1))/((1-q)*(1-q^3)*...*(1-q^(2*n+1)))^2.
G.f.: Sum_{k>=0} x^k/((1-x)(1-x^3)...(1-x^(2k+1))). - Michael Somos, Aug 18 2006
G.f.: (1 - G(0))/(1-x) where G(k) = 1 - 1/(1-x^(2*k+1))/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 18 2013
a(n) ~ exp(Pi*sqrt(n/3)) / (4*sqrt(n)). - Vaclav Kotesovec, Jun 10 2019
Conjectural g.f.: 1/(1 - x)*( 1 + Sum_{n >= 0} x^(3*n+1) /((1 - x)*(1 - x^3)*...*(1 - x^(2*n+1))) ). - Peter Bala, Nov 18 2024

A182616 Number of partitions of 2n that contain odd parts.

Original entry on oeis.org

0, 1, 3, 8, 17, 35, 66, 120, 209, 355, 585, 946, 1498, 2335, 3583, 5428, 8118, 12013, 17592, 25525, 36711, 52382, 74173, 104303, 145698, 202268, 279153, 383145, 523105, 710655, 960863, 1293314, 1733281, 2313377, 3075425, 4073085, 5374806, 7067863, 9263076
Offset: 0

Views

Author

Omar E. Pol, Dec 03 2010

Keywords

Comments

Bisection (even part) of A086543.

Examples

			For n=3 the partitions of 2n are
6 ....................... does not contains odd parts
3 + 3 ................... contains odd parts ........... *
4 + 2 ................... does not contains odd parts
2 + 2 + 2 ............... does not contains odd parts
5 + 1 ................... contains odd parts ........... *
3 + 2 + 1 ............... contains odd parts ........... *
4 + 1 + 1 ............... contains odd parts ........... *
2 + 2 + 1 + 1 ........... contains odd parts ........... *
3 + 1 + 1 + 1 ........... contains odd parts ........... *
2 + 1 + 1 + 1 + 1 ....... contains odd parts ........... *
1 + 1 + 1 + 1 + 1 + 1 ... contains odd parts ........... *
There are 8 partitions of 2n that contain odd parts.
Also p(2n)-p(n) = p(6)-p(3) = 11-3 = 8, where p(n) is the number of partitions of n, so a(3)=8.
From _Gus Wiseman_, Oct 18 2023: (Start)
For n > 0, also the number of integer partitions of 2n that do not contain n, ranked by A366321. For example, the a(1) = 1 through a(4) = 17 partitions are:
  (2)  (4)     (6)       (8)
       (31)    (42)      (53)
       (1111)  (51)      (62)
               (222)     (71)
               (411)     (332)
               (2211)    (521)
               (21111)   (611)
               (111111)  (2222)
                         (3221)
                         (3311)
                         (5111)
                         (22211)
                         (32111)
                         (221111)
                         (311111)
                         (2111111)
                         (11111111)
(End)
		

Crossrefs

Cf. A304710.
Bisection of A086543, with ranks A366322.
The case of all odd parts is A035294, bisection of A000009.
The strict case is A365828.
These partitions have ranks A366530.
A000041 counts integer partitions, strict A000009.
A006477 counts partitions with at least one odd and even part, ranks A366532.
A047967 counts partitions with at least one even part, ranks A324929.
A086543 counts partitions of n not containing n/2, ranks A366319.
A366527 counts partitions of 2n with an even part, ranks A366529.

Programs

  • Maple
    with(combinat): a:= n-> numbpart(2*n) -numbpart(n): seq(a(n), n=0..35);
  • Mathematica
    Table[Length[Select[IntegerPartitions[2n],n>0&&FreeQ[#,n]&]],{n,0,15}] (* Gus Wiseman, Oct 11 2023 *)
    Table[Length[Select[IntegerPartitions[2n],Or@@OddQ/@#&]],{n,0,15}] (* Gus Wiseman, Oct 11 2023 *)

Formula

a(n) = A000041(2*n) - A000041(n).

Extensions

Edited by Alois P. Heinz, Dec 03 2010

A347443 Number of integer partitions of n with reverse-alternating product <= 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 10, 12, 19, 22, 34, 40, 60, 69, 101, 118, 168, 195, 272, 317, 434, 505, 679, 793, 1050, 1224, 1599, 1867, 2409, 2811, 3587, 4186, 5290, 6168, 7724, 9005, 11186, 13026, 16062, 18692, 22894, 26613, 32394, 37619, 45535, 52815, 63593, 73680
Offset: 0

Views

Author

Gus Wiseman, Sep 14 2021

Keywords

Comments

Includes all partitions of even length (A027187).
Also the number of integer partitions of n with reverse-alternating sum <= 1.
Also the number of integer partitions of n having either even length (A027187) or having exactly one odd part in the conjugate partition (A100824).
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (2111)   (2211)    (331)      (71)
                            (11111)  (3111)    (2221)     (2222)
                                     (111111)  (3211)     (3221)
                                               (4111)     (3311)
                                               (22111)    (4211)
                                               (211111)   (5111)
                                               (1111111)  (221111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

The odd-length case is A035363 (shifted).
The strict case is A067661.
The non-reverse version is counted by A119620, ranked by A347466.
The even bisection is A236913.
The opposite version (>= instead of <=) is A344607.
The case of < 1 instead of <= 1 is A344608.
The multiplicative version (factorizations) is A347438, non-reverse A339846.
Allowing any integer reverse-alternating product gives A347445.
The complement (> 1 instead of <= 1) is counted by A347449.
Ranked by A347465, non-reverse A347450.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A058622 counts compositions with alternating sum <= 0 (A294175 for < 0).
A100824 counts partitions with alternating sum <= 1.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A347461 counts possible alternating products of partitions.
A347462 counts possible reverse-alternating products of partitions.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],altprod[Reverse[#]]<=1&]],{n,0,30}]

Formula

a(n) = A027187(n) + A035363(n-1) for n >= 1. [Corrected by Georg Fischer, Dec 13 2022]
a(n) = A119620(n) + A344608(n).
Showing 1-10 of 33 results. Next