cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A053251 Coefficients of the '3rd-order' mock theta function psi(q).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 19, 22, 24, 27, 31, 34, 37, 42, 46, 51, 57, 62, 68, 76, 83, 91, 101, 109, 120, 132, 143, 156, 171, 186, 202, 221, 239, 259, 283, 306, 331, 360, 388, 420, 455, 490, 529, 572, 616, 663, 716, 769, 827
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

Comments

Number of partitions of n into odd parts such that if a number occurs as a part then so do all smaller positive odd numbers.
Number of ways to express n as a partial sum of 1 + [1,3] + [1,5] + [1,7] + [1,9] + .... E.g., a(6)=2 because we have 6 = 1+1+1+1+1+1 = 1+3+1+1. - Jon Perry, Jan 01 2004
Also number of partitions of n such that the largest part occurs exactly once and all the other parts occur exactly twice. Example: a(9)=4 because we have [9], [7,1,1], [5,2,2] and [3,2,2,1,1]. - Emeric Deutsch, Mar 08 2006
Number of partitions (d1,d2,...,dm) of n such that 0 < d1/1 < d2/2 < ... < dm/m. - Seiichi Manyama, Mar 17 2018
For Emeric Deutsch's comment above, (1) this appears to be an alternately equal case of A122130, (2) the ordered version (compositions) is A239327, (3) allowing any length gives A351006, (4) the even-length version is A351007. - Gus Wiseman, Feb 25 2022

Examples

			q + q^2 + q^3 + 2*q^4 + 2*q^5 + 2*q^6 + 3*q^7 + 3*q^8 + 4*q^9 + ...
From _Seiichi Manyama_, Mar 17 2018: (Start)
n | Partition (d1,d2,...,dm) | (d1/1, d2/2, ... , dm/m)
--+--------------------------+-------------------------
1 | (1)                      | (1)
2 | (2)                      | (2)
3 | (3)                      | (3)
4 | (4)                      | (4)
  | (1, 3)                   | (1, 3/2)
5 | (5)                      | (5)
  | (1, 4)                   | (1, 2)
6 | (6)                      | (6)
  | (1, 5)                   | (1, 5/2)
7 | (7)                      | (7)
  | (1, 6)                   | (1, 3)
  | (2, 5)                   | (2, 5/2)
8 | (8)                      | (8)
  | (1, 7)                   | (1, 7/2)
  | (2, 6)                   | (2, 3)
9 | (9)                      | (9)
  | (1, 8)                   | (1, 4)
  | (2, 7)                   | (2, 7/2)
  | (1, 3, 5)                | (1, 3/2, 5/3) (End)
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 55, Eq. (26.13).
  • Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355.
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 31.

Crossrefs

Other '3rd-order' mock theta functions are at A000025, A053250, A053252, A053253, A053254, A053255.
Cf. A003475.

Programs

  • Maple
    f:=n->q^(n^2)/mul((1-q^(2*i+1)),i=0..n-1); add(f(i),i=1..6);
    # second Maple program:
    b:= proc(n, i) option remember; (s-> `if`(n>s, 0, `if`(n=s, 1,
          b(n, i-1)+b(n-i, min(n-i, i-1)))))(i*(i+1)/2)
        end:
    a:= n-> `if`(n=0, 0, add(b(j, min(j, n-2*j-1)), j=0..iquo(n, 2))):
    seq(a(n), n=0..80);  # Alois P. Heinz, May 17 2018
  • Mathematica
    Series[Sum[q^n^2/Product[1-q^(2k-1), {k, 1, n}], {n, 1, 10}], {q, 0, 100}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = Function[s, If[n > s, 0, If[n == s, 1, b[n, i - 1] + b[n - i, Min[n - i, i - 1]]]]][i*(i + 1)/2];
    a[n_] := If[n==0, 0, Sum[b[j, Min[j, n-2*j-1]], {j, 0, Quotient[n, 2]}]];
    Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jun 17 2018, after Alois P. Heinz *)
  • PARI
    { n=20; v=vector(n); for (i=1,n,v[i]=vector(2^(i-1))); v[1][1]=1; for (i=2,n, k=length(v[i-1]); for (j=1,k, v[i][j]=v[i-1][j]+1; v[i][j+k]=v[i-1][j]+2*i-1)); c=vector(n); for (i=1,n, for (j=1,2^(i-1), if (v[i][j]<=n, c[v[i][j]]++))); c } \\ Jon Perry
    
  • PARI
    {a(n) = local(t); if(n<0, 0, t = 1 + O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k-1) / (1 - x^(2*k-1)) + O(x^(n-(k-1)^2+1))), n))} /* Michael Somos, Sep 04 2007 */

Formula

G.f.: psi(q) = Sum_{n>=1} q^(n^2) / ( (1-q)*(1-q^3)*...*(1-q^(2*n-1)) ).
G.f.: Sum_{k>=1} q^k*Product_{j=1..k-1} (1+q^(2*j)) (see the Fine reference, p. 58, Eq. (26,53)). - Emeric Deutsch, Mar 08 2006
a(n) ~ exp(Pi*sqrt(n/6)) / (4*sqrt(n)). - Vaclav Kotesovec, Jun 09 2019

Extensions

More terms from Emeric Deutsch, Mar 08 2006

A366528 Sum of odd prime indices of n.

Original entry on oeis.org

0, 1, 0, 2, 3, 1, 0, 3, 0, 4, 5, 2, 0, 1, 3, 4, 7, 1, 0, 5, 0, 6, 9, 3, 6, 1, 0, 2, 0, 4, 11, 5, 5, 8, 3, 2, 0, 1, 0, 6, 13, 1, 0, 7, 3, 10, 15, 4, 0, 7, 7, 2, 0, 1, 8, 3, 0, 1, 17, 5, 0, 12, 0, 6, 3, 6, 19, 9, 9, 4, 0, 3, 21, 1, 6, 2, 5, 1, 0, 7, 0, 14, 23, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239(n).

Examples

			The prime indices of 198 are {1,2,2,5}, so a(198) = 1+5 = 6.
		

Crossrefs

Zeros are A066207, counted by A035363.
The triangle for this rank statistic is A113685, without zeros A365067.
For count instead of sum we have A257991, even A257992.
Nonzeros are A366322, counted by A086543.
The even version is A366531, halved A366533, triangle A113686.
A000009 counts partitions into odd parts, ranks A066208.
A053253 = partitions with all odd parts and conjugate parts, ranks A352143.
A066967 adds up sums of odd parts over all partitions.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A162641 counts even prime exponents, odd A162642.
A352142 = odd indices with odd exponents, counted by A117958.

Programs

  • Mathematica
    Table[Total[Cases[FactorInteger[n], {p_?(OddQ@*PrimePi),k_}:>PrimePi[p]*k]],{n,100}]

Formula

a(n) = A056239(n) - A366531(n).

A000025 Coefficients of the 3rd-order mock theta function f(q).

Original entry on oeis.org

1, 1, -2, 3, -3, 3, -5, 7, -6, 6, -10, 12, -11, 13, -17, 20, -21, 21, -27, 34, -33, 36, -46, 51, -53, 58, -68, 78, -82, 89, -104, 118, -123, 131, -154, 171, -179, 197, -221, 245, -262, 279, -314, 349, -369, 398, -446, 486, -515, 557, -614, 671, -715, 767, -845, 920, -977, 1046, -1148, 1244
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of partitions of n with even rank minus number with odd rank. The rank of a partition is its largest part minus the number of parts.

Examples

			G.f. = 1 + q - 2*q^2 + 3*q^3 - 3*q^4 + 3*q^5 - 5*q^6 + 7*q^7 - 6*q^8 + 6*q^9 + ...
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 82, Examples 4 and 5.
  • Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 17, 31.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Other '3rd-order' mock theta functions are at A013953, A053250, A053251, A053252, A053253, A053254, A053255. See also A000039, A000199.

Programs

  • Maple
    a:= m-> coeff(series((1+4*add((-1)^n*q^(n*(3*n+1)/2)/
            (1+q^n), n=1..m))/mul(1-q^i, i=1..m), q, m+1), q, m):
    seq(a(n), n=0..120);
  • Mathematica
    CoefficientList[Series[(1+4Sum[(-1)^n q^(n(3n+1)/2)/(1+q^n), {n, 1, 10}])/Sum[(-1)^n q^(n(3n+1)/2), {n, -8, 8}], {q, 0, 100}], q] (* N. J. A. Sloane *)
    sgn[P_ (* a partition *)] :=
    Signature[
      PermutationList[
       Cycles[Flatten[
         SplitBy[Range[Total[P]], (Function[{x}, x > #1] &) /@
           Accumulate[P]], Length[P] - 1]]]]
    conjugate[P_List(* a partition *)] :=
    Module[{s = Select[P, #1 > 0 &], i, row, r}, row = Length[s];
      Table[r = row; While[s[[row]] <= i, row--]; r, {i, First[s]}]]
    Total[Function[{x}, sgn[x] sgn[conjugate[x]]] /@
        IntegerPartitions[#]] & /@ Range[20]
    (* George Beck, Oct 25 2014 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^k^2 / Product[ 1 + x^j, {j, k}]^2, {k, 0, Sqrt@n}], {x, 0, n}]]; (* Michael Somos, Jun 30 2015 *)
    rnk[prts_]:=Max[prts]-Length[prts]; mtf[n_]:=Module[{pn=IntegerPartitions[n]},Total[If[ EvenQ[ rnk[#]],1,-1]&/@pn]]; Join[{1},Array[mtf,60]] (* Harvey P. Dale, Sep 13 2024 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=1, sqrtint(n), x^k^2 / prod(i=1, k, 1 + x^i, 1 + x * O(x^(n - k^2)))^2, 1), n))}; /* Michael Somos, Sep 02 2007 */
    
  • PARI
    my(N=60, x='x+O('x^N)); Vec(1+1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2)*(1-x^k)^2/(1+x^k))) \\ Seiichi Manyama, May 23 2023

Formula

G.f.: 1 + Sum_{n>=1} (q^(n^2) / Product_{i=1..n} (1 + q^i)^2).
G.f.: (1 + 4 * Sum_{n>=1} (-1)^n * q^(n*(3*n+1)/2) / (1 + q^n)) / Product_{i>=1} (1 - q^i).
a(n) ~ -(-1)^n * exp(Pi*sqrt(n/6)) / (2*sqrt(n)) [Ramanujan]. - Vaclav Kotesovec, Jun 10 2019
G.f.: 1 - Sum_{n >= 1} (-1)^n*x^n/Product_{k = 1..n} 1 + x^k. See Fine, equation 26.22, p. 55. - Peter Bala, Feb 04 2021
From Seiichi Manyama, May 23 2023: (Start)
a(n) = A340601(n) - A340692(n).
G.f.: 1 + (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2) * (1-x^k)^2 / (1+x^k). (End)

Extensions

Entry improved by comments from Dean Hickerson

A053250 Coefficients of the '3rd-order' mock theta function phi(q).

Original entry on oeis.org

1, 1, 0, -1, 1, 1, -1, -1, 0, 2, 0, -2, 1, 1, -1, -2, 1, 3, -1, -2, 1, 2, -2, -3, 1, 4, 0, -4, 2, 3, -2, -4, 1, 5, -2, -5, 3, 5, -3, -5, 2, 7, -2, -7, 3, 6, -4, -8, 3, 9, -2, -9, 5, 9, -5, -10, 3, 12, -4, -12, 5, 11, -6, -13, 6, 16, -6, -15, 7, 15, -8, -17, 7, 19, -6, -20, 9, 19, -10, -22, 8, 25, -9, -25, 12, 25, -12, -27, 11, 31
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

Examples

			G.f. = 1 + x - x^3 + x^4 + x^5 - x^6 - x^7 + 2*x^9 - 2*x^11 + x^12 + x^13 - x^14 + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 55, Eq. (26.12), p. 58, Eq. (26.56).
  • Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 17, 31.

Crossrefs

Other '3rd-order' mock theta functions are at A000025, A053251, A053252, A053253, A053254, A053255.

Programs

  • Maple
    f:=n->q^(n^2)/mul((1+q^(2*i)),i=1..n); add(f(n),n=0..10);
  • Mathematica
    Series[Sum[q^n^2/Product[1+q^(2k), {k, 1, n}], {n, 0, 10}], {q, 0, 100}]
    a[ n_] := SeriesCoefficient[ Sum[ x^k^2 / QPochhammer[ -x^2, x^2, k], {k, 0, Sqrt@ n}], {x, 0, n}]; (* Michael Somos, Jul 09 2015 *)
  • PARI
    {a(n) = my(t); if(n<0, 0, t = 1 + O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 + x^(2*k)) + O(x^(n - (k-1)^2 + 1)), 1), n))}; /* Michael Somos, Jul 16 2007 */

Formula

Consider partitions of n into distinct odd parts. a(n) = number of them for which the largest part minus twice the number of parts is == 3 (mod 4) minus the number for which it is == 1 (mod 4).
a(n) = (-1)^n*(A027358(n)-A027357(n)). - Vladeta Jovovic, Mar 12 2006
G.f.: 1 + Sum_{k>0} x^k^2 / ((1 + x^2) (1 + x^4) ... (1 + x^(2*k))).
G.f. 1 + Sum_{n >= 0} x^(2*n+1)*Product_{k = 1..n} (x^(2*k-1) - 1) (Folsom et al.). Cf. A207569 and A215066. - Peter Bala, May 16 2017

A365067 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n whose odd parts sum to k, for k ranging from mod(n,2) to n in steps of 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 3, 3, 2, 2, 4, 3, 4, 3, 5, 5, 3, 4, 4, 6, 5, 6, 6, 5, 8, 7, 5, 6, 8, 6, 10, 7, 10, 9, 10, 8, 12, 11, 7, 10, 12, 12, 10, 15, 11, 14, 15, 15, 16, 12, 18, 15, 11, 14, 20, 18, 20, 15, 22, 15, 22, 21, 25, 24, 24, 18, 27
Offset: 0

Views

Author

Gus Wiseman, Oct 16 2023

Keywords

Comments

The version for all k = 0..n is A113685 (including zeros).

Examples

			Triangle begins:
   1
   1
   1  1
   1  2
   2  1  2
   2  2  3
   3  2  2  4
   3  4  3  5
   5  3  4  4  6
   5  6  6  5  8
   7  5  6  8  6 10
   7 10  9 10  8 12
  11  7 10 12 12 10 15
  11 14 15 15 16 12 18
  15 11 14 20 18 20 15 22
  15 22 21 25 24 24 18 27
Row n = 8 counts the following partitions:
  (8)     (611)    (431)     (521)      (71)
  (62)    (4211)   (41111)   (332)      (53)
  (44)    (22211)  (3221)    (32111)    (5111)
  (422)            (221111)  (2111111)  (3311)
  (2222)                                (311111)
                                        (11111111)
Row n = 9 counts the following partitions:
  (81)     (63)      (54)       (72)        (9)
  (621)    (6111)    (522)      (5211)      (711)
  (441)    (432)     (4311)     (3321)      (531)
  (4221)   (42111)   (411111)   (321111)    (51111)
  (22221)  (3222)    (32211)    (21111111)  (333)
           (222111)  (2211111)              (33111)
                                            (3111111)
                                            (111111111)
		

Crossrefs

Row sums are A000041.
The version including all k is A113685, even version A113686.
Column k = 1 is A119620.
The even version and the reverse version are both A174713.
For odd-indexed instead of odd parts we have A346697, even version A346698.
The corresponding rank statistic is A366528, even version A366531.
A000009 counts partitions into odd parts, ranks A066208.
A086543 counts partitions with odd parts, ranks A366322.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Total[Select[#,OddQ]]==k&]],{n,0,15},{k,Mod[n,2],n,2}]

Formula

T(n,k) = A000009(k) * A000041((n-k)/2).

A053254 Coefficients of the '3rd-order' mock theta function nu(q).

Original entry on oeis.org

1, -1, 2, -2, 2, -3, 4, -4, 5, -6, 6, -8, 10, -10, 12, -14, 15, -18, 20, -22, 26, -29, 32, -36, 40, -44, 50, -56, 60, -68, 76, -82, 92, -101, 110, -122, 134, -146, 160, -176, 191, -210, 230, -248, 272, -296, 320, -350, 380, -410, 446, -484, 522, -566, 612, -660, 715, -772, 830, -896, 966, -1038
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

Comments

In Watson 1936 the function is denoted by upsilon(q). - Michael Somos, Jul 25 2015

Examples

			G.f. = 1 - x + 2*x^2 - 2*x^3 + 2*x^4 - 3*x^5 + 4*x^6 - 4*x^7 + 5*x^8 + ...
		

References

  • George E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, (Example 6, p. 29).
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 31.

Crossrefs

Other '3rd-order' mock theta functions are at A000025, A053250, A053251, A053252, A053253, A053255.

Programs

  • Mathematica
    Series[Sum[q^(n(n+1))/Product[1+q^(2k+1), {k, 0, n}], {n, 0, 9}], {q, 0, 100}]
  • PARI
    /* Continued Fraction Expansion: */
    {a(n)=local(CF); CF=1+x; for(k=0, n, CF=1/(1 + x^(n-k+1)*(1 - x^(n-k+1))*CF+x*O(x^n))); polcoeff(CF, n)} \\ Paul D. Hanna, Jul 09 2013

Formula

G.f.: nu(q) = Sum_{n >= 0} q^(n*(n+1))/((1+q)*(1+q^3)*...*(1+q^(2*n+1)))
(-1)^n*a(n) = number of partitions of n in which even parts are distinct and if k occurs then so does every positive even number less than k.
G.f.: 1/(1 + x*(1-x)/(1 + x^2*(1-x^2)/(1 + x^3*(1-x^3)/(1 + x^4*(1-x^4)/(1 + x^5*(1-x^5)/(1 + ...)))))), a continued fraction. - Paul D. Hanna, Jul 09 2013
a(2*n) = A085140(n). a(2*n + 1) = - A053253(n). - Michael Somos, Jul 25 2015
a(n) ~ (-1)^n * exp(Pi*sqrt(n/6)) / (2^(3/2)*sqrt(n)). - Vaclav Kotesovec, Jun 15 2019
From Peter Bala, Jan 03 2025: (Start)
a(n) = (-1)^n * A067357(n).
nu(-q) = Sum_{n >= 0} q^n * (1 + q)*(1 + q^3)*...*(1 + q^(2*n-1)) (Andrews, p. 29: in Example 6 take x = q and y = -q).
Conjecture: a(n) = (-1)^n * (A376628(n) + A376628(n+1)), or equivalently, (1 + q * nu(-q))/(1 + q) = Sum_{n >= 0} q^(n*(n+1))/((1 - q)*(1 - q^3)*...*(1 - q^(2*n-1))), the g.f. of A376628. (End)

A186424 Odd terms in A186423.

Original entry on oeis.org

1, 3, 11, 17, 33, 43, 67, 81, 113, 131, 171, 193, 241, 267, 323, 353, 417, 451, 523, 561, 641, 683, 771, 817, 913, 963, 1067, 1121, 1233, 1291, 1411, 1473, 1601, 1667, 1803, 1873, 2017, 2091, 2243, 2321, 2481, 2563, 2731, 2817, 2993, 3083, 3267, 3361, 3553, 3651
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 21 2011

Keywords

Comments

Sum of odd square and half of even square. - Vladimir Joseph Stephan Orlovsky, May 20 2011
Numbers m such that 6*m-2 is a square. - Bruno Berselli, Apr 29 2016

Crossrefs

Programs

  • Haskell
    a186424 n = a186424_list !! n
    a186424_list = filter odd a186423_list
    
  • Mathematica
    Table[If[OddQ[n],n^2+((n+1)^2)/2,(n^2)/2+(n+1)^2],{n,0,100}] (* Vladimir Joseph Stephan Orlovsky, May 20 2011 *)
  • Python
    def A186424(n): return (n*(3*n + 2) + 1 if n&1 else n*(3*n + 4) + 2)>>1 # Chai Wah Wu, Jan 31 2023

Formula

From R. J. Mathar, Feb 28 2011: (Start)
G.f.: ( -1-2*x-6*x^2-2*x^3-x^4 ) / ( (1+x)^2*(x-1)^3 ).
a(n) = 3*(1+2*n+2*n^2)/4 + (-1)^n*(1+2*n)/4. (End)
a(n+2) = a(n) + A091999(n+2).
Union of A080859 and A126587: a(2*n) = A080859(n) and a(2*n+1) = A126587(n+1).
From Peter Bala, Feb 13 2021: (Start)
Appears to be the sequence of exponents in the following series expansion:
Sum_{n >= 0} (-1)^n * x^n/Product_{k = 1..n} 1 - x^(2*k-1) = 1 - x - x^3 + x^11 + x^17 - x^33 - x^43 + + - - .... Cf. A053253.
More generally, for nonnegative integer N, we appear to have the identity
Product_{j = 1..N} 1/(1 + x^(2*j-1))*( P(N,x) + Sum_{n >= 1} (-1)^n * x^((2*N+1)*n-N)/Product_{k = 1..n} 1 - x^(2*k-1) ) = 1 - x - x^3 + x^11 + x^17 - x^33 - x^43 + + - - ..., where P(N,x) is a polynomial in x of degree N^2 - 1, with the first few values given empirically by
P(0,x) = 0, P(1,x) = 1, P(2,x) = 1 - x^2 + x^3, P(3,x) = 1 - x^2 + x^5 - x^7 + x^8 and P(4,x) = 1 - x^2 - x^4 + x^5 + x^8 - x^9 + x^12 - x^14 + x^15. Cf. A203568. (End)
E.g.f.: ((2 + 5*x + 3*x^2)*cosh(x) + (1 + 7*x + 3*x^2)*sinh(x))/2. - Stefano Spezia, May 08 2021
Sum_{n>=0} 1/a(n) = sqrt(2)*Pi*sinh(sqrt(2)*Pi/3)/(1+2*cosh(sqrt(2)*Pi/3)). - Amiram Eldar, May 11 2025

A053252 Coefficients of the '3rd-order' mock theta function chi(q).

Original entry on oeis.org

1, 1, 1, 0, 0, 0, 1, 1, 0, 0, -1, 0, 1, 1, 1, -1, 0, 0, 0, 1, 0, 0, -1, 0, 1, 1, 1, 0, -1, -1, 1, 1, 0, -1, -1, 0, 1, 2, 1, -1, -1, 0, 1, 1, 0, -1, -2, 0, 1, 2, 1, -1, -1, -1, 1, 2, 1, -1, -2, -1, 2, 2, 1, -1, -2, -1, 1, 2, 0, -1, -3, 0, 2, 3, 2, -2, -2, -1, 2, 3, 0, -2, -3, -1, 2, 3, 2, -3, -3, -1, 2, 4, 1, -2, -4, -1, 3, 4, 2, -2, -4
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 55, Eq. (26.14).
  • Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355.
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 17.

Crossrefs

Other '3rd-order' mock theta functions are at A000025, A053250, A053251, A053253, A053254, A053255, A261401.

Programs

  • Mathematica
    Series[Sum[q^n^2/Product[1-q^k+q^(2k), {k, 1, n}], {n, 0, 10}], {q, 0, 100}]

Formula

G.f.: chi(q) = Sum_{n >= 0} q^n^2/((1-q+q^2)*(1-q^2+q^4)*...*(1-q^n+q^(2n))).
G.f.: G(0), where G(k) = 1 + q^(k+1) / (1 - q^(k+1)) / G(k+1). - Joerg Arndt, Jun 29 2013

A053255 Coefficients of the '3rd-order' mock theta function rho(q).

Original entry on oeis.org

1, -1, 0, 1, 0, -1, 1, -1, 0, 1, -1, 0, 2, -1, -1, 1, -1, -1, 2, -1, 0, 2, -1, -1, 2, -2, -1, 3, -2, -1, 3, -2, -1, 3, -2, -1, 4, -3, -1, 4, -2, -2, 4, -3, -2, 5, -4, -2, 6, -3, -2, 6, -4, -2, 7, -5, -2, 7, -5, -3, 8, -6, -3, 9, -6, -3, 10, -6, -4, 10, -7, -4, 12, -8, -4, 13, -8, -5, 13, -9, -5, 15, -10, -5, 16, -11, -6, 17, -12, -7, 19, -13, -6, 21, -13
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 15.

Crossrefs

Other '3rd-order' mock theta functions are at A000025, A053250, A053251, A053252, A053253, A053254.

Programs

  • Mathematica
    Series[Sum[q^(2n(n+1))/Product[1+q^(2k+1)+q^(4k+2), {k, 0, n}], {n, 0, 6}], {q, 0, 100}]

Formula

G.f.: rho(q) = Sum_{n >= 0} q^(2*n*(n+1))/((1+q+q^2)*(1+q^3+q^6)*...*(1+q^(2*n+1)+q^(4*n+2))).

A352142 Numbers whose prime factorization has all odd indices and all odd exponents.

Original entry on oeis.org

1, 2, 5, 8, 10, 11, 17, 22, 23, 31, 32, 34, 40, 41, 46, 47, 55, 59, 62, 67, 73, 82, 83, 85, 88, 94, 97, 103, 109, 110, 115, 118, 125, 127, 128, 134, 136, 137, 146, 149, 155, 157, 160, 166, 167, 170, 179, 184, 187, 191, 194, 197, 205, 206, 211, 218, 227, 230
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
These are the Heinz numbers of integer partitions with all odd parts and all odd multiplicities, counted by A117958.

Examples

			The terms together with their prime indices begin:
   1 = 1
   2 = prime(1)
   5 = prime(3)
   8 = prime(1)^3
  10 = prime(1) prime(3)
  11 = prime(5)
  17 = prime(7)
  22 = prime(1) prime(5)
  23 = prime(9)
  31 = prime(11)
  32 = prime(1)^5
  34 = prime(1) prime(7)
  40 = prime(1)^3 prime(3)
		

Crossrefs

The restriction to primes is A031368.
The first condition alone is A066208, counted by A000009.
These partitions are counted by A117958.
The squarefree case is A258116, even A258117.
The second condition alone is A268335, counted by A055922.
The even-even version is A352141 counted by A035444.
A000290 = exponents all even, counted by A035363.
A056166 = exponents all prime, counted by A055923.
A066207 = indices all even, counted by A035363 (complement A086543).
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even prime exponents, odd A162642.
A257991 counts odd prime indices, even A257992.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A351979 = odd indices with even exponents, counted by A035457.
A352140 = even indices with odd exponents, counted by A055922 aerated.
A352143 = odd indices with odd conjugate indices, counted by A053253 aerated.

Programs

  • Mathematica
    Select[Range[100],#==1||And@@OddQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
  • Python
    from itertools import count, islice
    from sympy import primepi, factorint
    def A352142_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda k:all(map(lambda x:x[1]%2 and primepi(x[0])%2, factorint(k).items())),count(max(startvalue,1)))
    A352142_list = list(islice(A352142_gen(),30)) # Chai Wah Wu, Mar 18 2022

Formula

Intersection of A066208 and A268335.
A257991(a(n)) = A001222(a(n)).
A162642(a(n)) = A001221(a(n)).
A257992(a(n)) = A162641(a(n)) = 0.
Showing 1-10 of 17 results. Next