cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A000700 Expansion of Product_{k>=0} (1 + x^(2k+1)); number of partitions of n into distinct odd parts; number of self-conjugate partitions; number of symmetric Ferrers graphs with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8, 8, 9, 11, 12, 12, 14, 16, 17, 18, 20, 23, 25, 26, 29, 33, 35, 37, 41, 46, 49, 52, 57, 63, 68, 72, 78, 87, 93, 98, 107, 117, 125, 133, 144, 157, 168, 178, 192, 209, 223, 236, 255, 276, 294, 312, 335, 361, 385
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Coefficients of replicable function number 96a. - N. J. A. Sloane, Jun 10 2015
For n >= 1, a(n) is the minimal row sum in the character table of the symmetric group S_n. The minimal row sum in the table corresponds to the one-dimensional alternating representation of S_n. The maximal row sum is in sequence A085547. - Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 15 2003
Also the number of partitions of n into parts != 2 and differing by >= 6 with strict inequality if a part is even. [Alladi]
Let S be the set formed by the partial sums of 1+[2,3]+[2,5]+[2,7]+[2,9]+..., where [2,odd] indicates a choice, e.g., we may have 1+2, or 1+3+2, or 1+3+5+2+9, etc. Then A000700(n) is the number of elements of S that equal n. Also A000700(n) is the same parity as A000041(n) (the partition numbers). - Jon Perry, Dec 18 2003
a(n) is for n >= 2 the number of conjugacy classes of the symmetric group S_n which split into two classes under restriction to A_n, the alternating group. See the G. James - A. Kerber reference given under A115200, p. 12, 1.2.10 Lemma and the W. Lang link under A115198.
Also number of partitions of n such that if k is the largest part, then k occurs an odd number of times and each integer from 1 to k-1 occurs a positive even number of times (these are the conjugates of the partitions of n into distinct odd parts). Example: a(15)=4 because we have [3,3,3,2,2,1,1], [3,2,2,2,2,1,1,1,1], [3,2,2,1,1,1,1,1,1,1,1] and [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 16 2006
The INVERTi transform of A000009 (number of partitions of n into odd parts starting with offset 1) = (1, 0, 1, -1, 1, -1, 1, -2, 2, -2, 2, -3, 3, -3, 4, ...); = left border of triangle A146061. - Gary W. Adamson, Oct 26 2008
For n even: the sum over all even nonnegative integers, k, such that k^2 < n, of the number of partitions of (n-k^2)/2 into parts of size at most k. For n odd: the sum over all odd nonnegative integers, j, such that j^2 < n, of the number of partitions of (n-j^2)/2 into parts of size at most j. - Graham H. Hawkes, Oct 18 2013
This number is also (the number of conjugacy classes of S_n containing even permutations) - (the number of conjugacy classes of S_n containing odd permutations) = (the number of partitions of n into a number of parts having the same parity as n) - (the number of partitions of n into a number of parts having opposite parity as n) = (the number of partitions of n with largest part having same parity as n) - (the number of partitions with largest part having opposite parity as n). - David L. Harden, Dec 09 2016
a(n) is odd iff n belongs to A052002; that is, Sum_{n>=0} x^A052002(n) == Sum_{n>=0} a(n)*x^n (mod 2). - Peter Bala, Jan 22 2017
Also the number of conjugacy classes of S_n whose members yield unique square roots, i.e., there exists a unique h in S_n such that hh = g for any g in such a conjugacy class. Proof: first note that a permutation's square roots are determined by the product of the square roots of its decomposition into cycles of different lengths. h can only travel to one other cycle before it must "return home" (h^2(x) = g(x) must be in x's cycle), and, because if g^n(x) = x then h^2n(x) = x and h^2n(h(x)) = h(x), this "traveling" must preserve cycle length or one cycle will outpace the other. However, a permutation decomposing into two cycles of the same length has multiple square roots: for example, e = e^2 = (a b)^2, (a b)(c d) = (a c b d)^2 = (a d b c)^2, (a b c)(d e f) = (a d b e c f)^2 = (a e b f c d)^2, etc. This is true for any cycle length so we need only consider permutations with distinct cycle lengths. Finally, even cycle lengths are odd permutations and thus cannot be square, while odd cycle lengths have the unique square root h(x) = g^((n+1)/2)(x). Thus there is a correspondence between these conjugacy classes and partitions into distinct odd parts. - Keith J. Bauer, Jan 09 2024
a(2*n) equals the number of partitions of n into parts congruent to +-2, +-3, +-4 or +-5 mod 16. See Merca, 2015, Corollary 4.3. - Peter Bala, Dec 12 2024

Examples

			T96a = 1/q + q^23 + q^71 + q^95 + q^119 + q^143 + q^167 + 2*q^191 + ...
G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 3*x^12 + ...
		

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; see p. 197.
  • B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054.
  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, see q_2.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 86.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 277, Theorems 345, 347.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of A218907.

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( (&*[1 + x^(2*j+1): j in [0..m+2]]) )); // G. C. Greubel, Sep 07 2023
    
  • Maple
    N := 100; t1 := series(mul(1+x^(2*k+1),k=0..N),x,N); A000700 := proc(n) coeff(t1,x,n); end;
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(n>i^2, 0,
           b(n, i-1)+`if`(i*2-1>n, 0, b(n-(i*2-1), i-1))))
        end:
    a:= n-> b(n, iquo(n+1, 2)):
    seq(a(n), n=0..80);  # Alois P. Heinz, Mar 12 2016
  • Mathematica
    CoefficientList[ Series[ Product[1 + x^(2k + 1), {k, 0, 75}], {x, 0, 70}], x] (* Robert G. Wilson v, Aug 22 2004 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ[ q]}, SeriesCoefficient[ ((1 - m) m /(16 q))^(-1/24), {q, 0, n}]]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ Product[1 + x^k, {k, 1, n, 2}], {x, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    p[n_] := p[n] = Select[Select[IntegerPartitions[n], DeleteDuplicates[#] == # &], Apply[And, OddQ[#]] &]; Table[p[n], {n, 0, 20}] (* shows partitions of n into distinct odd parts *)
    Table[Length[p[n]], {n, 0, 20}] (* A000700(n), n >= 0 *)
    conjugatePartition[part_] := Table[Count[#, ?(# >= i &)], {i, First[#]}] &[part]; s[n] := s[n] = Select[IntegerPartitions[n], conjugatePartition[#] == # &]; Table[s[n], {n, 1, 20}]  (* shows self-conjugate partitions *)
    Table[Length[s[n]], {n, 1, 20}]  (* A000700(n), n >= 1 *)
    (* Peter J. C. Moses, Mar 12 2014 *)
    CoefficientList[QPochhammer[q^2]^2/(QPochhammer[q]*QPochhammer[q^4]) + O[q]^70, q] (* Jean-François Alcover, Nov 05 2015, after Michael Somos *)
    (O[x]^70 + 2/QPochhammer[-1, -x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[If[OddQ[k], poly[[j + 1]] += poly[[j - k + 1]]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Nov 24 2017 *)
  • Maxima
    S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A)), n))}; /* Michael Somos, Jun 11 2004 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 + (-x)^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Jun 11 2004 */
    
  • PARI
    my(x='x+O('x^70)); Vec(eta(x^2)^2/(eta(x)*eta(x^4))) \\ Joerg Arndt, Sep 07 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A000700(n): return 1 if n== 0 else sum((-1)**(k+1)*A000700(n-k)*prod((p**(e+1)-1)//(p-1) for p, e in factorint(k).items() if p > 2) for k in range(1,n+1))//n # Chai Wah Wu, Sep 09 2021
    
  • SageMath
    from sage.modular.etaproducts import qexp_eta
    m=80
    def f(x): return qexp_eta(QQ[['q']], m+2).subs(q=x)
    def A000700_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x^2)^2/(f(x)*f(x^4)) ).list()
    A000700_list(m) # G. C. Greubel, Sep 07 2023

Formula

G.f.: Product_{k>=1} (1 + x^(2*k-1)).
G.f.: Sum_{k>=0} x^(k^2)/Product_{i=1..k} (1-x^(2*i)). - Euler (Hardy and Wright, Theorem 345)
G.f.: 1/Product_{i>=1} (1 + (-x)^i). - Jon Perry, May 27 2004
Expansion of chi(q) = (-q; q^2)_oo = f(q) / f(-q^2) = phi(q) / f(q) = f(-q^2) / psi(-q) = phi(-q^2) / f(-q) = psi(q) / f(-q^4), where phi(), chi(), psi(), f() are Ramanujan theta functions.
Sum_{k=0..n} A081360(k)*a(n-k) = 0, for n > 0. - John W. Layman, Apr 26 2000
Euler transform of period-4 sequence [1, -1, 1, 0, ...].
Expansion of q^(1/24) * eta(q^2)^2 /(eta(q) * eta(q^4)) in powers of q. - Michael Somos, Jun 11 2004
Asymptotics: a(n) ~ exp(Pi*l_n)/(2*24^(1/4)*l_n^(3/2)) where l_n = (n-1/24)^(1/2) (Ayoub). The asymptotic formula in Ayoub is incorrect, as that would imply faster growth than the total number of partitions. (It was quoted correctly, the book is just wrong, not sure what the correct asymptotic is.) - Edward Early, Nov 15 2002. Right formula is a(n) ~ exp(Pi*sqrt(n/6)) / (2*24^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jun 23 2014
a(n) = (1/n)*Sum_{k = 1..n} (-1)^(k+1)*b(k)*a(n-k), n>1, a(0) = 1, b(n) = A000593(n) = sum of odd divisors of n. - Vladeta Jovovic, Jan 19 2002 [see Theorem 2(a) in N. Robbins's article]
For n > 0: a(n) = b(n, 1) where b(n, k) = b(n-k, k+2) + b(n, k+2) if k < n, otherwise (n mod 2) * 0^(k-n). - Reinhard Zumkeller, Aug 26 2003
Expansion of q^(1/24) * (m * (1 - m) / 16)^(-1/24) in powers of q where m = k^2 is the parameter and q is the nome for Jacobian elliptic functions.
Given g.f. A(x), B(q) = (1/q)* A(q^3)^8 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u*v * (u - v^2) * (v - u^2) - (4 * (1 - u*v))^2. - Michael Somos, Jul 16 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 16 2007
Expansion of q^(1/24)*f(t) in powers of q = exp(Pi*i*t) where f() is Weber's function. - Michael Somos, Oct 18 2007
A069911(n) = a(2*n + 1). A069910(n) = a(2*n).
a(n) = Sum_{k=1..n} (-1)^(n-k) A008284(n,k). - Jeremy L. Martin, Jul 06 2013
a(n) = S(n,1), where S(n,m) = Sum_{k=m..n/2} (-1)^(k+1)*S(n-k,k) + (-1)^(n+1), S(n,n)=(-1)^(n+1), S(0,m)=1, S(n,m)=0 for n < m. - Vladimir Kruchinin, Sep 07 2014
G.f.: Product_{k>0} (1 + x^(2*k-1)) = Product_{k>0} (1 - (-x)^k) / (1 - (-x)^(2*k)) = Product_{k>0} 1 / (1 + (-x)^k). - Michael Somos, Nov 08 2014
a(n) ~ Pi * BesselI(1, Pi*sqrt(24*n-1)/12) / sqrt(24*n-1) ~ exp(Pi*sqrt(n/6)) / (2^(7/4) * 3^(1/4) * n^(3/4)) * (1 - (3*sqrt(6)/(8*Pi) + Pi/(48*sqrt(6))) / sqrt(n) + (5/128 - 45/(64*Pi^2) + Pi^2/27648) / n). - Vaclav Kotesovec, Jan 08 2017
G.f.: exp(Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 07 2018
Given g.f. A(x), B(q) = (1/q) * A(q^24) / 2^(1/4) satisfies 0 = f(B(q), B(q^5)) where f(u, v) = u^6 + v^6 + 2*u*v * (1 - (u*v)^4). - Michael Somos, Mar 14 2019
G.f.: Sum_{n >= 0} x^n/Product_{i = 1..n} ( 1 + (-1)^(i+1)*x^i ). - Peter Bala, Nov 30 2020
From Peter Bala, Jan 15 2021: (Start)
G.f.: (1 + x) * Sum_{n >= 0} x^(n*(n+2))/Product_{k = 1..n} (1 - x^(2*k)) = (1 + x)*(1 + x^3) * Sum_{n >= 0} x^(n*(n+4))/Product_{k = 1..n} (1 - x^(2*k)) = (1 + x)*(1 + x^3)*(1 + x^5) * Sum_{n >= 0} x^(n*(n+6))/ Product_{k = 1..n} (1 - x^(2*k)) = ....
G.f.: 1/(1 + x) * Sum_{n >= 0} x^(n-1)^2/Product_{k = 1..n} (1 - x^(2*k)) = 1/((1 + x)*(1 + x^3)) * Sum_{n >= 0} x^(n-2)^2/Product_{k = 1..n} (1 - x^(2*k)) = 1/((1 + x)*(1 + x^3)*(1 + x^5)) * Sum_{n >= 0} x^(n-3)^2/ Product_{k = 1..n} (1 - x^(2*k)) = .... (End)
a(n) = A046682(n) - A000701(n). See Gupta and also Ballantine et al. - Michel Marcus, Sep 04 2021
G.f.: A(x) = exp( Sum_{k >= 1} (-1)^k/(k*(x^k - x^(-k))) ). - Peter Bala, Dec 23 2021

A053251 Coefficients of the '3rd-order' mock theta function psi(q).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 19, 22, 24, 27, 31, 34, 37, 42, 46, 51, 57, 62, 68, 76, 83, 91, 101, 109, 120, 132, 143, 156, 171, 186, 202, 221, 239, 259, 283, 306, 331, 360, 388, 420, 455, 490, 529, 572, 616, 663, 716, 769, 827
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

Comments

Number of partitions of n into odd parts such that if a number occurs as a part then so do all smaller positive odd numbers.
Number of ways to express n as a partial sum of 1 + [1,3] + [1,5] + [1,7] + [1,9] + .... E.g., a(6)=2 because we have 6 = 1+1+1+1+1+1 = 1+3+1+1. - Jon Perry, Jan 01 2004
Also number of partitions of n such that the largest part occurs exactly once and all the other parts occur exactly twice. Example: a(9)=4 because we have [9], [7,1,1], [5,2,2] and [3,2,2,1,1]. - Emeric Deutsch, Mar 08 2006
Number of partitions (d1,d2,...,dm) of n such that 0 < d1/1 < d2/2 < ... < dm/m. - Seiichi Manyama, Mar 17 2018
For Emeric Deutsch's comment above, (1) this appears to be an alternately equal case of A122130, (2) the ordered version (compositions) is A239327, (3) allowing any length gives A351006, (4) the even-length version is A351007. - Gus Wiseman, Feb 25 2022

Examples

			q + q^2 + q^3 + 2*q^4 + 2*q^5 + 2*q^6 + 3*q^7 + 3*q^8 + 4*q^9 + ...
From _Seiichi Manyama_, Mar 17 2018: (Start)
n | Partition (d1,d2,...,dm) | (d1/1, d2/2, ... , dm/m)
--+--------------------------+-------------------------
1 | (1)                      | (1)
2 | (2)                      | (2)
3 | (3)                      | (3)
4 | (4)                      | (4)
  | (1, 3)                   | (1, 3/2)
5 | (5)                      | (5)
  | (1, 4)                   | (1, 2)
6 | (6)                      | (6)
  | (1, 5)                   | (1, 5/2)
7 | (7)                      | (7)
  | (1, 6)                   | (1, 3)
  | (2, 5)                   | (2, 5/2)
8 | (8)                      | (8)
  | (1, 7)                   | (1, 7/2)
  | (2, 6)                   | (2, 3)
9 | (9)                      | (9)
  | (1, 8)                   | (1, 4)
  | (2, 7)                   | (2, 7/2)
  | (1, 3, 5)                | (1, 3/2, 5/3) (End)
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 55, Eq. (26.13).
  • Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355.
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 31.

Crossrefs

Other '3rd-order' mock theta functions are at A000025, A053250, A053252, A053253, A053254, A053255.
Cf. A003475.

Programs

  • Maple
    f:=n->q^(n^2)/mul((1-q^(2*i+1)),i=0..n-1); add(f(i),i=1..6);
    # second Maple program:
    b:= proc(n, i) option remember; (s-> `if`(n>s, 0, `if`(n=s, 1,
          b(n, i-1)+b(n-i, min(n-i, i-1)))))(i*(i+1)/2)
        end:
    a:= n-> `if`(n=0, 0, add(b(j, min(j, n-2*j-1)), j=0..iquo(n, 2))):
    seq(a(n), n=0..80);  # Alois P. Heinz, May 17 2018
  • Mathematica
    Series[Sum[q^n^2/Product[1-q^(2k-1), {k, 1, n}], {n, 1, 10}], {q, 0, 100}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = Function[s, If[n > s, 0, If[n == s, 1, b[n, i - 1] + b[n - i, Min[n - i, i - 1]]]]][i*(i + 1)/2];
    a[n_] := If[n==0, 0, Sum[b[j, Min[j, n-2*j-1]], {j, 0, Quotient[n, 2]}]];
    Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jun 17 2018, after Alois P. Heinz *)
  • PARI
    { n=20; v=vector(n); for (i=1,n,v[i]=vector(2^(i-1))); v[1][1]=1; for (i=2,n, k=length(v[i-1]); for (j=1,k, v[i][j]=v[i-1][j]+1; v[i][j+k]=v[i-1][j]+2*i-1)); c=vector(n); for (i=1,n, for (j=1,2^(i-1), if (v[i][j]<=n, c[v[i][j]]++))); c } \\ Jon Perry
    
  • PARI
    {a(n) = local(t); if(n<0, 0, t = 1 + O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k-1) / (1 - x^(2*k-1)) + O(x^(n-(k-1)^2+1))), n))} /* Michael Somos, Sep 04 2007 */

Formula

G.f.: psi(q) = Sum_{n>=1} q^(n^2) / ( (1-q)*(1-q^3)*...*(1-q^(2*n-1)) ).
G.f.: Sum_{k>=1} q^k*Product_{j=1..k-1} (1+q^(2*j)) (see the Fine reference, p. 58, Eq. (26,53)). - Emeric Deutsch, Mar 08 2006
a(n) ~ exp(Pi*sqrt(n/6)) / (4*sqrt(n)). - Vaclav Kotesovec, Jun 09 2019

Extensions

More terms from Emeric Deutsch, Mar 08 2006

A000025 Coefficients of the 3rd-order mock theta function f(q).

Original entry on oeis.org

1, 1, -2, 3, -3, 3, -5, 7, -6, 6, -10, 12, -11, 13, -17, 20, -21, 21, -27, 34, -33, 36, -46, 51, -53, 58, -68, 78, -82, 89, -104, 118, -123, 131, -154, 171, -179, 197, -221, 245, -262, 279, -314, 349, -369, 398, -446, 486, -515, 557, -614, 671, -715, 767, -845, 920, -977, 1046, -1148, 1244
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of partitions of n with even rank minus number with odd rank. The rank of a partition is its largest part minus the number of parts.

Examples

			G.f. = 1 + q - 2*q^2 + 3*q^3 - 3*q^4 + 3*q^5 - 5*q^6 + 7*q^7 - 6*q^8 + 6*q^9 + ...
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 82, Examples 4 and 5.
  • Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 17, 31.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Other '3rd-order' mock theta functions are at A013953, A053250, A053251, A053252, A053253, A053254, A053255. See also A000039, A000199.

Programs

  • Maple
    a:= m-> coeff(series((1+4*add((-1)^n*q^(n*(3*n+1)/2)/
            (1+q^n), n=1..m))/mul(1-q^i, i=1..m), q, m+1), q, m):
    seq(a(n), n=0..120);
  • Mathematica
    CoefficientList[Series[(1+4Sum[(-1)^n q^(n(3n+1)/2)/(1+q^n), {n, 1, 10}])/Sum[(-1)^n q^(n(3n+1)/2), {n, -8, 8}], {q, 0, 100}], q] (* N. J. A. Sloane *)
    sgn[P_ (* a partition *)] :=
    Signature[
      PermutationList[
       Cycles[Flatten[
         SplitBy[Range[Total[P]], (Function[{x}, x > #1] &) /@
           Accumulate[P]], Length[P] - 1]]]]
    conjugate[P_List(* a partition *)] :=
    Module[{s = Select[P, #1 > 0 &], i, row, r}, row = Length[s];
      Table[r = row; While[s[[row]] <= i, row--]; r, {i, First[s]}]]
    Total[Function[{x}, sgn[x] sgn[conjugate[x]]] /@
        IntegerPartitions[#]] & /@ Range[20]
    (* George Beck, Oct 25 2014 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^k^2 / Product[ 1 + x^j, {j, k}]^2, {k, 0, Sqrt@n}], {x, 0, n}]]; (* Michael Somos, Jun 30 2015 *)
    rnk[prts_]:=Max[prts]-Length[prts]; mtf[n_]:=Module[{pn=IntegerPartitions[n]},Total[If[ EvenQ[ rnk[#]],1,-1]&/@pn]]; Join[{1},Array[mtf,60]] (* Harvey P. Dale, Sep 13 2024 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=1, sqrtint(n), x^k^2 / prod(i=1, k, 1 + x^i, 1 + x * O(x^(n - k^2)))^2, 1), n))}; /* Michael Somos, Sep 02 2007 */
    
  • PARI
    my(N=60, x='x+O('x^N)); Vec(1+1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2)*(1-x^k)^2/(1+x^k))) \\ Seiichi Manyama, May 23 2023

Formula

G.f.: 1 + Sum_{n>=1} (q^(n^2) / Product_{i=1..n} (1 + q^i)^2).
G.f.: (1 + 4 * Sum_{n>=1} (-1)^n * q^(n*(3*n+1)/2) / (1 + q^n)) / Product_{i>=1} (1 - q^i).
a(n) ~ -(-1)^n * exp(Pi*sqrt(n/6)) / (2*sqrt(n)) [Ramanujan]. - Vaclav Kotesovec, Jun 10 2019
G.f.: 1 - Sum_{n >= 1} (-1)^n*x^n/Product_{k = 1..n} 1 + x^k. See Fine, equation 26.22, p. 55. - Peter Bala, Feb 04 2021
From Seiichi Manyama, May 23 2023: (Start)
a(n) = A340601(n) - A340692(n).
G.f.: 1 + (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2) * (1-x^k)^2 / (1+x^k). (End)

Extensions

Entry improved by comments from Dean Hickerson

A053253 Coefficients of the '3rd-order' mock theta function omega(q).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 14, 18, 22, 29, 36, 44, 56, 68, 82, 101, 122, 146, 176, 210, 248, 296, 350, 410, 484, 566, 660, 772, 896, 1038, 1204, 1391, 1602, 1846, 2120, 2428, 2784, 3182, 3628, 4138, 4708, 5347, 6072, 6880, 7784, 8804, 9940, 11208, 12630
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

Comments

Empirical: a(n) is the number of integer partitions mu of 2n+1 such that the diagram of mu has an odd number of cells in each row and in each column. - John M. Campbell, Apr 24 2020
From Gus Wiseman, Jun 26 2022: (Start)
By Campbell's conjecture above that a(n) is the number of partitions of 2n+1 with all odd parts and all odd conjugate parts, the a(0) = 1 through a(5) = 8 partitions are (B = 11):
(1) (3) (5) (7) (9) (B)
(111) (311) (511) (333) (533)
(11111) (31111) (711) (911)
(1111111) (51111) (33311)
(3111111) (71111)
(111111111) (5111111)
(311111111)
(11111111111)
These partitions are ranked by A352143. (End)

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 15, 17, 31.

Crossrefs

Other '3rd-order' mock theta functions are at A000025, A053250, A053251, A053252, A053254, A053255, A261401.
Cf. A095913(n)=a(n-3).
Cf. A259094.
Conjectured to count the partitions ranked by A352143.
A069911 = strict partitions w/ all odd parts, ranked by A258116.
A078408 = partitions w/ all odd parts, ranked by A066208.
A117958 = partitions w/ all odd parts and multiplicities, ranked by A352142.

Programs

  • Mathematica
    Series[Sum[q^(2n(n+1))/Product[1-q^(2k+1), {k, 0, n}]^2, {n, 0, 6}], {q, 0, 100}]
  • PARI
    {a(n)=local(A); if(n<0, 0, A=1+x*O(x^n); polcoeff( sum(k=0, (sqrtint(2*n+1)-1)\2, A*=(x^(4*k)/(1-x^(2*k+1))^2 +x*O(x^(n-2*(k^2-k))))), n))} /* Michael Somos, Aug 18 2006 */
    
  • PARI
    {a(n)=local(A); if(n<0, 0, n++; A=1+x*O(x^n); polcoeff( sum(k=0, n-1, A*=(x/(1-x^(2*k+1)) +x*O(x^(n-k)))), n))} /* Michael Somos, Aug 18 2006 */

Formula

G.f.: omega(q) = Sum_{n>=0} q^(2*n*(n+1))/((1-q)*(1-q^3)*...*(1-q^(2*n+1)))^2.
G.f.: Sum_{k>=0} x^k/((1-x)(1-x^3)...(1-x^(2k+1))). - Michael Somos, Aug 18 2006
G.f.: (1 - G(0))/(1-x) where G(k) = 1 - 1/(1-x^(2*k+1))/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 18 2013
a(n) ~ exp(Pi*sqrt(n/3)) / (4*sqrt(n)). - Vaclav Kotesovec, Jun 10 2019
Conjectural g.f.: 1/(1 - x)*( 1 + Sum_{n >= 0} x^(3*n+1) /((1 - x)*(1 - x^3)*...*(1 - x^(2*n+1))) ). - Peter Bala, Nov 18 2024

A053254 Coefficients of the '3rd-order' mock theta function nu(q).

Original entry on oeis.org

1, -1, 2, -2, 2, -3, 4, -4, 5, -6, 6, -8, 10, -10, 12, -14, 15, -18, 20, -22, 26, -29, 32, -36, 40, -44, 50, -56, 60, -68, 76, -82, 92, -101, 110, -122, 134, -146, 160, -176, 191, -210, 230, -248, 272, -296, 320, -350, 380, -410, 446, -484, 522, -566, 612, -660, 715, -772, 830, -896, 966, -1038
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

Comments

In Watson 1936 the function is denoted by upsilon(q). - Michael Somos, Jul 25 2015

Examples

			G.f. = 1 - x + 2*x^2 - 2*x^3 + 2*x^4 - 3*x^5 + 4*x^6 - 4*x^7 + 5*x^8 + ...
		

References

  • George E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, (Example 6, p. 29).
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 31.

Crossrefs

Other '3rd-order' mock theta functions are at A000025, A053250, A053251, A053252, A053253, A053255.

Programs

  • Mathematica
    Series[Sum[q^(n(n+1))/Product[1+q^(2k+1), {k, 0, n}], {n, 0, 9}], {q, 0, 100}]
  • PARI
    /* Continued Fraction Expansion: */
    {a(n)=local(CF); CF=1+x; for(k=0, n, CF=1/(1 + x^(n-k+1)*(1 - x^(n-k+1))*CF+x*O(x^n))); polcoeff(CF, n)} \\ Paul D. Hanna, Jul 09 2013

Formula

G.f.: nu(q) = Sum_{n >= 0} q^(n*(n+1))/((1+q)*(1+q^3)*...*(1+q^(2*n+1)))
(-1)^n*a(n) = number of partitions of n in which even parts are distinct and if k occurs then so does every positive even number less than k.
G.f.: 1/(1 + x*(1-x)/(1 + x^2*(1-x^2)/(1 + x^3*(1-x^3)/(1 + x^4*(1-x^4)/(1 + x^5*(1-x^5)/(1 + ...)))))), a continued fraction. - Paul D. Hanna, Jul 09 2013
a(2*n) = A085140(n). a(2*n + 1) = - A053253(n). - Michael Somos, Jul 25 2015
a(n) ~ (-1)^n * exp(Pi*sqrt(n/6)) / (2^(3/2)*sqrt(n)). - Vaclav Kotesovec, Jun 15 2019
From Peter Bala, Jan 03 2025: (Start)
a(n) = (-1)^n * A067357(n).
nu(-q) = Sum_{n >= 0} q^n * (1 + q)*(1 + q^3)*...*(1 + q^(2*n-1)) (Andrews, p. 29: in Example 6 take x = q and y = -q).
Conjecture: a(n) = (-1)^n * (A376628(n) + A376628(n+1)), or equivalently, (1 + q * nu(-q))/(1 + q) = Sum_{n >= 0} q^(n*(n+1))/((1 - q)*(1 - q^3)*...*(1 - q^(2*n-1))), the g.f. of A376628. (End)

A053252 Coefficients of the '3rd-order' mock theta function chi(q).

Original entry on oeis.org

1, 1, 1, 0, 0, 0, 1, 1, 0, 0, -1, 0, 1, 1, 1, -1, 0, 0, 0, 1, 0, 0, -1, 0, 1, 1, 1, 0, -1, -1, 1, 1, 0, -1, -1, 0, 1, 2, 1, -1, -1, 0, 1, 1, 0, -1, -2, 0, 1, 2, 1, -1, -1, -1, 1, 2, 1, -1, -2, -1, 2, 2, 1, -1, -2, -1, 1, 2, 0, -1, -3, 0, 2, 3, 2, -2, -2, -1, 2, 3, 0, -2, -3, -1, 2, 3, 2, -3, -3, -1, 2, 4, 1, -2, -4, -1, 3, 4, 2, -2, -4
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 55, Eq. (26.14).
  • Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355.
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 17.

Crossrefs

Other '3rd-order' mock theta functions are at A000025, A053250, A053251, A053253, A053254, A053255, A261401.

Programs

  • Mathematica
    Series[Sum[q^n^2/Product[1-q^k+q^(2k), {k, 1, n}], {n, 0, 10}], {q, 0, 100}]

Formula

G.f.: chi(q) = Sum_{n >= 0} q^n^2/((1-q+q^2)*(1-q^2+q^4)*...*(1-q^n+q^(2n))).
G.f.: G(0), where G(k) = 1 + q^(k+1) / (1 - q^(k+1)) / G(k+1). - Joerg Arndt, Jun 29 2013

A053255 Coefficients of the '3rd-order' mock theta function rho(q).

Original entry on oeis.org

1, -1, 0, 1, 0, -1, 1, -1, 0, 1, -1, 0, 2, -1, -1, 1, -1, -1, 2, -1, 0, 2, -1, -1, 2, -2, -1, 3, -2, -1, 3, -2, -1, 3, -2, -1, 4, -3, -1, 4, -2, -2, 4, -3, -2, 5, -4, -2, 6, -3, -2, 6, -4, -2, 7, -5, -2, 7, -5, -3, 8, -6, -3, 9, -6, -3, 10, -6, -4, 10, -7, -4, 12, -8, -4, 13, -8, -5, 13, -9, -5, 15, -10, -5, 16, -11, -6, 17, -12, -7, 19, -13, -6, 21, -13
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 15.

Crossrefs

Other '3rd-order' mock theta functions are at A000025, A053250, A053251, A053252, A053253, A053254.

Programs

  • Mathematica
    Series[Sum[q^(2n(n+1))/Product[1+q^(2k+1)+q^(4k+2), {k, 0, n}], {n, 0, 6}], {q, 0, 100}]

Formula

G.f.: rho(q) = Sum_{n >= 0} q^(2*n*(n+1))/((1+q+q^2)*(1+q^3+q^6)*...*(1+q^(2*n+1)+q^(4*n+2))).

A215066 Expansion of e.g.f.: Sum_{n>=0} Product_{k=1..n} (exp((2*k-1)*x) - 1).

Original entry on oeis.org

1, 1, 7, 127, 4315, 235831, 18911467, 2091412807, 305035062955, 56729101908151, 13102338649018027, 3679320979659518887, 1234515698986458346795, 487763952468349266962071, 224150079034073231822617387, 118541831524545132821950527367
Offset: 0

Views

Author

Paul D. Hanna, Aug 01 2012

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 7*x^2/2! + 127*x^3/3! + 4315*x^4/4! + 235831*x^5/5! +...
where
A(x) = 1 + (exp(x)-1) + (exp(x)-1)*(exp(3*x)-1) + (exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1) + (exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1)*(exp(7*x)-1) + (exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1)*(exp(7*x)-1)*(exp(9*x)-1) +...
		

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (&+[(&*[Exp((2*k-1)*x) -1: k in [1..j]]): j in [1..m+1]]) )); [1] cat [Factorial(n)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 07 2020
    
  • Maple
    m:= 20; S:= series( add(mul(exp((2*k-1)*x)-1, k=1..j), j=0..m+1), x, m+1): seq(factorial(j)*coeff(S, x, j), j = 0..m); # G. C. Greubel, Feb 07 2020
  • Mathematica
    Table[((-1)^n*2*Sum[Sum[n!/(a!*(2b)!*(n-a-2b)!)*(3/2)^a*(5/2)^(2b) * EulerE[2a+2b],{a,0,n}],{b,0,n/2}] + 2*(-1)^n*Sum[n!/((n-2b)!*(2b)!)*(3/2)^(n-2b)*(1/2)^(2b)*EulerE[2n-2b],{b,0,n/2}])/4,{n,0,20}] (* Vaclav Kotesovec, May 04 2014 after A. Folsom *)
    With[{m=20}, CoefficientList[Series[Sum[Product[Exp[(2*k-1)*x] -1, {k, j}], {j, 0, m+2}], {x,0,m}], x]*Range[0, m]!] (* G. C. Greubel, Feb 07 2020 *)
  • PARI
    {a(n)=n!*polcoeff(sum(m=0, n+1, prod(k=1, m, exp((2*k-1)*x+x*O(x^n))-1)), n)}
    for(n=0, 26, print1(a(n), ", "))
    
  • Sage
    m=20;
    def A215066_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( sum(product(exp((2*k-1)*x)-1 for k in (1..j)) for j in (0..m)) ).list()
    a=A215066_list(m+1); [factorial(n)*a[n] for n in (0..m)] # G. C. Greubel, Feb 07 2020

Formula

Folsom et al. give a closed form for a(n). - N. J. A. Sloane, Feb 09 2013
E.g.f.: 1 + (exp(x)-1)/(W(0)-exp(x)+1), where W(k) = (exp(x))^(2*k+1) - ((exp(x))^(2*k+3)-1)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 05 2014
a(n) ~ sqrt(6) * 24^n * (n!)^2 / (sqrt(n) * Pi^(2*n+3/2)). - Vaclav Kotesovec, May 04 2014
E.g.f.: 1/2*( 1 + Sum_{n>=0} exp((2*n+1)*x)*Product_{k=1..n} (exp((2*k-1)*x) - 1) ). Cf. A053250 and A207569. - Peter Bala, May 15 2017
Conjectural g.f.: Sum_{n >= 0} (-1)^n*Product_{k = 1..n} (1 + (-1)^k*exp(- k*t)). Cf. A158690. - Peter Bala, Jan 28 2021

A132969 Expansion of phi(q) * chi(q) in powers of q where phi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 3, 2, 1, 5, 5, 3, 5, 6, 10, 10, 8, 13, 15, 15, 16, 23, 27, 25, 30, 35, 40, 42, 45, 55, 66, 68, 70, 86, 95, 100, 110, 125, 141, 150, 161, 185, 207, 215, 235, 266, 293, 310, 335, 375, 410, 438, 470, 521, 575, 610, 653, 725, 785, 835, 900, 983, 1070, 1140
Offset: 0

Views

Author

Michael Somos, Sep 04 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x + 2*x^2 + x^3 + 5*x^4 + 5*x^5 + 3*x^6 + 5*x^7 + 6*x^8 + 10*x^9 + ...
G.f. = 1/q + 3*q^23 + 2*q^47 + q^71 + 5*q^95 + 5*q^119 + 3*q^143 + 5*q^167 +...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; top of p. 60.

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 - x^(2*k)) * ( (1 + x^k) / (1 + x^(2*k)) )^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x, x^2], {x, 0, n}]; (* Michael Somos, Oct 31 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, (n+1)\2, 1 + x^(2*k-1), 1 + x*O(x^n)) * sum(k=1, sqrtint(n), 2 * x^k^2, 1), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 / (eta(x + A) * eta(x^4 + A))^3, n))};

Formula

Expansion of phi(q) + 2 * psi(q) in powers of q where phi(), psi() are Ramanujan 3rd order mock theta functions.
Expansion of q^(1/24) * eta(q^2)^7 / (eta(q) * eta(q^4))^3 in powers of q.
Euler transform of period 4 sequence [ 3, -4, 3, -1, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = 48^(1/2) (t/i)^(1/2) f(t) where q = exp(2 Pi i t).
G.f.: ( Sum_{k in Z} x^k^2 ) * ( Product_{k>0} (1 + x^(2*k-1)) ).
G.f.: Product_{k>0} (1 - x^(2*k)) * ((1 + x^k) / (1 + x^(2*k)))^3.
a(n) = (-1)^n * A132970(n). a(n) = (-1)^n * A124226(n) unless n=1.
a(n) ~ exp(Pi*sqrt(n/6)) / (2*sqrt(n)). - Vaclav Kotesovec, Sep 08 2015

A207569 G.f.: Sum_{n>=0} Product_{k=1..n} ((1+x)^(2*k-1) - 1).

Original entry on oeis.org

1, 1, 3, 18, 151, 1640, 21825, 343763, 6253234, 128993019, 2975165831, 75866604098, 2119310099700, 64361149952242, 2111222815441491, 74391641880144734, 2802300974537717340, 112379709083552152423, 4780136025081921948194, 214954914688567198802759
Offset: 0

Views

Author

Paul D. Hanna, Feb 18 2012

Keywords

Comments

Compare g.f. to Sum_{n>=0} Product_{k=1..n} ((1+x)^k - 1), which is the g.f. of A179525.
Compare g.f. to Sum_{n>=0} Product_{k=1..n} (1 - (1 - x)^(2*k-1)), which is the g.f. of A158691. - Peter Bala, Dec 04 2020

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 151*x^4 + 1640*x^5 + 21825*x^6 + ...
such that, by definition,
A(x) = 1 + ((1+x)-1) + ((1+x)-1)*((1+x)^3-1) + ((1+x)-1)*((1+x)^3-1)*((1+x)^5-1) + ((1+x)-1)*((1+x)^3-1)*((1+x)^5-1)*((1+x)^7-1) + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Sum[Product[(1+x)^(2*k-1)-1, {k, 1, n}], {n, 0, 20}], {x, 0, 20}], x] (* Vaclav Kotesovec, May 06 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,prod(k=1,m,(1+x)^(2*k-1)-1) +x*O(x^n)),n)}
    for(n=0,25,print1(a(n),", "))

Formula

a(n) ~ sqrt(12) * 24^n * n^n / (exp(n+Pi^2/48) * Pi^(2*n+1)). - Vaclav Kotesovec, May 06 2014
G.f.: 1/2*( 1 + Sum_{n>=0} (1 + x)^(2*n+1) * Product_{k = 1..n} ((1 + x)^(2*k-1) - 1) ). Cf. A053250 and A215066. - Peter Bala, May 15 2017
Conjectural g.f.: Sum_{n>=0} (-1)^n*Product_{k = 1..n} 1 + ( -1/(1 + x) )^k. - Peter Bala, Dec 04 2020
From Peter Bala, Jan 29 2021: (Start)
Conjectural g.f.s: Sum_{n >= 0} (-1)^n*(1 + x)^(n+1)*Product_{k = 1..n} (1 + (-1)^k*(1 + x)^k)^2. Also
(1/2)*( 1 + Sum_{n >= 0} 1/(1 + x)^(n+1)*Product_{k = 1..n} (1 + (-1)^k/(1 + x)^k) ). (End)
Showing 1-10 of 18 results. Next